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1 Introduction  

In this document, we discuss the Orchard protocol in detail, as well as the use of secure 
elements for shielded transactions within the Orchard protocol. The Orchard protocol was 
deployed as part of the Zcash Network Upgrade 5 (NU5), which was activated on the maisnnet 
at block height 1,687,104 on May 31, 2022. The NU5 upgrade introduced several 
enhancements, notably the Orchard shielded protocol. This new protocol simplifies and 
strengthens Zcash privacy features by improving the efficiency and security of shielded 
transactions. The document begins with an abstraction of the different functions used in the 
main protocol of Orchard. Next, we discuss the procedure for spending a valid Orchard coin. 
Finally, we explain how a secure element can be used for shielded Orchard transactions. 

2 Abstraction 
Before discussing the key components of Orchard, we will first define some terms and 
abstractions that are later used in the Orchard protocol.  

2.1.1 Pallas and Vesta  
Pallas and Vesta are the elliptic curves used in the Orchard. Vesta is used in the Orchard for 
the proof system, while Pallas is used in the application circuit. Both curves are designed to be 
efficiently implemented in ZK-SNARK circuits; however, Pallas is the curve used for the ZK-
SNARK application in the Orchard. 

In this document, we use the notation ℙ for the group of points (𝑥, 𝑦) that satisfy the equation 
of the Pallas curve 𝑦2 = 𝑥3 + 5 𝑚𝑜𝑑 𝑞ℙ alonge with the zero element 𝒪ℙ.  Similarly, the 
notation 𝕍 is used for set of points that satisfies the Vesta curve equation 𝑦2 = 𝑥3 + 5 𝑚𝑜𝑑 𝑞𝕍, 
where 𝑞ℙ = 2254 + 45560315531419706090280762371685220353 and 𝑞𝕍 = 2254 +
45560315531506369815346746415080538113 are the prime numbers. The order of ℙ is 
𝑞𝕍 and the order of 𝕍 is 𝑞ℙ. 

2.1.2 Extract Function (𝐄𝐱𝐭𝐫𝐚𝐜𝐭ℙ) 
The Extract function is a mapping from the curve ℙ to the field ℤ𝑞ℙ, denoted by Extractℙ, 
defined as follows;  

Extractℙ: ℙ ∪⊥→ ℤ𝑞ℙ 

Extract𝕡(𝑄) = {
𝑥      𝑖𝑓    𝑄 = (𝑥, 𝑦)
⊥     𝑖𝑓       𝑄 = ⊥      
0      𝑖𝑓      𝑄 = 𝒪ℙ     

 

2.1.3 Hash to Field 
Hash to Field is a function defined as ℎ𝑎𝑠ℎ𝑡𝑜𝑓𝑖𝑒𝑙𝑑: 𝔹𝑛 × 𝔹𝑚 → 𝔽𝑞𝐺

2 , where 𝔹𝑛 denote the 
sequence of bytes of orbitrary length.   The function for the input ℎ𝑎𝑠ℎ𝑡𝑜𝑓𝑖𝑒𝑙𝑑

(𝑚𝑠𝑔, 𝐷𝑆𝑇) =
(𝑢0, 𝑢1)  is defined as follows; 

 Let DST′ = DST||𝑙𝑒𝑛𝑔𝑡ℎ(DST). 
 Let 𝑚𝑠𝑔′ = 0𝑥00128|| 𝑚𝑠𝑔 || [0,128] || [0] || 𝐷𝑆𝑇′  
 Let 𝑏0 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 512([0𝑥00]16, 𝑚𝑠𝑔′) 
 Let 𝑏1 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 512([0𝑥00]16, 𝑏0||[1]||𝐷𝑆𝑇′) 
 Let 𝑏2 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 512([0𝑥00]16, 𝑏0⨁𝑏1||[2]||𝐷𝑆𝑇′) 



 
 

 Return 𝑢0 = 𝑏1 𝑚𝑜𝑑 𝑞𝐺 and 𝑢1 = 𝑏2 𝑚𝑜𝑑 𝑞𝐺 . 

2.1.4 Group Hash 
The Group Hash is a function defined as 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝔾: 𝔹𝑛 × 𝔹𝑚 → 𝔾. The input to 
𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝔾 consists of a pair: the first element of the pair is the domain separator, which 
distinguishes the usage of the function for different purposes, and the second element is the 
message. Let (𝐷, 𝑀) be the input pair the 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝔾 can be calculated as follows; 

i. Let 𝐷𝑆𝑇 = 𝐷||” − “||𝐶𝑢𝑟𝑣𝑒 𝑛𝑎𝑚𝑒||_XMD:BLACK_SSWU_RO_. 
ii. Let (𝑢0, 𝑢1) = ℎ𝑎𝑠ℎ𝑡𝑜𝑓𝑖𝑙𝑒𝑑

(𝑀, 𝐷𝑆𝑇). 
iii. Let 𝑄0 = 𝑚𝑎𝑝_𝑡𝑜_𝑐𝑢𝑟𝑣𝑒_𝑠𝑖𝑚𝑝𝑙𝑒_𝑠𝑤𝑢(𝑢0) 
iv. Let 𝑄1 = 𝑚𝑎𝑝_𝑡𝑜_𝑐𝑢𝑟𝑣𝑒_𝑠𝑖𝑚𝑝𝑙𝑒_𝑠𝑤𝑢(𝑢1) 

Return 𝑖𝑠𝑜𝑚𝑎𝑝(𝑄0 + 𝑄1)  

2.1.5 Sinsemilla Hash Function 
The Sinsemilla Hash Function is a collision-resistant hash function based on the discrete 
logarithm problem over elliptic curves. This hash function is specifically designed for Zcash 
Orchard, optimizing the use of lookups available in recent proof systems. The Sinsemilla Hash 
function can be denoted by 𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑜𝑖𝑛𝑡: 𝔹𝑛 × 𝔹𝑚 → ℙ ∪ {⊥} defined as follows; 

i. Compute 𝑛 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (𝑙𝑒𝑛𝑔𝑡ℎ(𝑀)
𝑘

) 
ii. Let 𝑟 = (𝑛 × 𝑘) − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀) 

iii. Concatenate 0𝑟 with the message 𝑀, i.e., 𝑀′ = 𝑀||0𝑟 
iv. Dived the message 𝑀′ into 𝑛 sub blocks of size𝑘, i.e., 𝑚1, 𝑚2, … , 𝑚𝑛. 
v. Let 𝒬(𝐷) = 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("𝑧. 𝑐𝑎𝑠ℎ: SinsemillaQ", 𝐷) 

vi. Let 𝒮(𝑚) = 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("𝑧. 𝑐𝑎𝑠ℎ: SinsemillaS", 𝑚) 
vii. Define a binary operation  

(𝑥, 𝑦) ⋇ (𝑥′, 𝑦′) = {

(𝑥, 𝑦) + (𝑥′, 𝑦′)    𝑖𝑓    (𝑥, 𝑦) ≠ 𝒪ℙ ≠ (𝑥′, 𝑦′)
                               𝑎𝑛𝑑 

                                     (𝑥, 𝑦) ≠⊥≠ (𝑥′, 𝑦′)
⊥                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 

viii. Let 𝐴𝑐𝑐 = 𝒬(𝐷). 
ix. For 𝑖 form 1 upto 𝑛: 

 𝐴𝑐𝑐 = (𝐴𝑐𝑐 ⋇ 𝒮(𝑚𝑖)) ⋇ 𝐴𝑐𝑐 

Return 𝐴𝑐𝑐. 

2.1.6 Sinsemilla Commitments 
The Sinsemilla commitment is a commitment function that is based on Sinsemilla hash 
function, with additional randomized point on the Pallas curve. Mathematically the 
commitment can be written as; 

𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐶𝑜𝑚𝑚𝑖𝑡𝑟(𝐷, 𝑀) = {𝑀′ + 𝑟 ⋅ 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ(𝐷||"-r", "")    𝑖𝑓 𝑀′ ≠⊥
⊥               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    

 

In the above equation, 𝑀′ =  𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑜𝑖𝑛𝑡(𝐷||"-M", 𝑀). The Commit function 
is defined as follows; 

 Commitrivk
𝑖𝑣𝑘 (𝑥, 𝑦) = Extractℙ(𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐶𝑜𝑚𝑚𝑖𝑡𝑟("z.cash:Orchard-CommitIvk", 𝑥||𝑦)).  



 
 

2.1.7 Orchard Note Commitment  
When a note is created through a transaction, only a commitment to its content is publicly 
disclosed in the transaction's Action description. This commitment is added to the note 
commitment tree when the transaction is recorded on the block chain. This ensures that the 
value and recipient remain private, while the ZK-SNARK proof verifies the note’s existence 
on the block chain when it is spent. In the Orchard to create a note Sinsemilla Commitment has 
been used, the detail is given as follows; 

𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚
𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑥, 𝑦) = 𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐶𝑜𝑚𝑚𝑖𝑡𝑟("z.cash:Orchard-NoteComit", 𝑥||𝑦) 

2.1.8 Derive Internal FVK  
The function to derive internal FVK is denoted by DeriveInternalFVKOrchard defined as 
follows;   

i. Let 𝐾 = 𝑟𝑖𝑣𝑘 represented in little-endian order. 
ii. 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

= 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",K,0x83||𝑎𝑘||𝑛𝑘) 𝑚𝑜𝑑 𝑟ℙ 
iii. Return (𝑎𝑘, 𝑛𝑘, 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

). 
2.1.9 Diversify Hash 
Let 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ be as defined in 6.1.5, which is a function that map a string of bytes into the 
point of Pallas and Vesta Elliptic curve Point. Using the group hash the diversify hash can be 
calculated as follows;  

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑑) = {𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("z.cash:Orchard-gd", "")      𝑖𝑓 𝑃 = 𝒪ℙ   
     𝑃                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑃 = 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("z.cash:Orchard-gd", 𝑑). 
2.1.10 𝒓𝒆𝒑𝒓𝔾 Function  
Let 𝔾 be an Elliptic, then the 𝑟𝑒𝑝𝑟𝔾 is function from 𝔾 to the set of bytes of length 𝑙𝔾, defined 
as follows; 

𝑟𝑒𝑝𝑟𝔾(𝒪𝔾 ) = 0 

𝑟𝑒𝑝𝑟𝔾((𝑥, 𝑦) ) = {𝑥 𝑚𝑜𝑑 𝑞𝔾 + 2255   𝑖𝑓 𝑦 ≡ 1 𝑚𝑜𝑑 2
𝑥 𝑚𝑜𝑑 𝑞𝔾                𝑖𝑓 𝑦 ≡ 0 𝑚𝑜𝑑 2  

3 Orchard Key Component.  
A new Orchard spending key can be generated by choosing a random sequence 𝑠𝑘 . From the 
spending key 𝑠𝑘 , generate the following keys, generate the spend authorization key 𝑎𝑠𝑘, 
nullifier deriving key 𝑛𝑘 and the key for commitment randomness given as follows  

𝑎𝑠𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝑠𝑘||6) 𝑚𝑜𝑑 𝑟ℙ 
𝑛𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝑠𝑘||7) 𝑚𝑜𝑑 𝑞ℙ 
𝑟𝑖𝑣𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝑠𝑘||8) 𝑚𝑜𝑑 𝑟ℙ 

From the spend authorization, compute the public key that validates the spend authorization, 
called the "validate spend authorization key" 𝑎𝑘

ℙ defined as follows 
𝑎𝑘

ℙ = 𝑎𝑠𝑘 ∙ 𝐺𝑜𝑟𝑐ℎ𝑎𝑟𝑑  
𝑎𝑘 = Extractℙ(𝑎𝑠𝑘 ∙ 𝐺𝑜𝑟𝑐ℎ𝑎𝑟𝑑) 

From the 𝑛𝑘 and 𝑎𝑘 compute the incoming viewing key 𝑖𝑣𝑘 using the Commit function defined 
as follows; 

𝑖𝑣𝑘 = Commitrivk
𝑖𝑣𝑘 (𝑎𝑘, 𝑛𝑘) 

Let 𝐾 = 𝑟𝑖𝑣𝑘 represented in little-endian order and suppose  



 
 

𝑅 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝐾||0𝑥82||𝑎𝑘||𝑛𝑘). 
(𝑎𝑘𝑛𝑘, 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ) = DeriveInternalFVKOrchard(𝑎𝑘, 𝑛𝑘, 𝑟𝑖𝑣𝑘) 

Let 𝑑𝑘 be the first 32 bytes of 𝑅 and 𝑜𝑣𝑘 be reaming 32 bytes of 𝑅 and 𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  
represented in little-endian order.  

𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙||0𝑥82||𝑎𝑘||𝑛𝑘). 
Let 𝑑𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  be the first 32 bytes of 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and 𝑜𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  be reaming 32 bytes of 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙. 
Afterward create a new diversified payment address from the given incoming viewing 
key (𝑑𝑘, 𝑖𝑣𝑘). To do this first choose a diversifier index uniformly and calculate the diversifier 
𝑑 and the diversified transmission key 𝑝𝑘𝑑, the procedure is given as follows; 

d = FF1 − AES256𝑑𝑘(“”, Index) 
𝑔𝑑

ℙ = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑) 
𝑝𝑘𝑑

ℙ = 𝑖𝑣𝑘 ∙ 𝑔𝑑
ℙ 

FF1-AES256 is a format-preserving encryption algorithm that uses AES-256. It provides a 
secure pseudo-random permutation for a fixed empty string “” as a tweak. The relationship 
between the key components of the Orchard is depicted in Fig 4. 

 

Figure 1 Orchard Key Components 

4 Note 
The orchard note is the set (𝑑, 𝑝𝑘𝑑, 𝑣, 𝜌, 𝜓, 𝑟𝑐𝑚), where 𝑑 is the diversifier, 𝑝𝑘𝑑 is diversifier 

public key address, 𝑣 is the value of the coin, 𝜌 and 𝜓 is the value to compute the nullifier and 

𝑟𝑐𝑚 is the random commitment trapdoor.   



 
 

5  Spending a Valid Coin (Orchard) 
Let 𝐴 be user with and orchard shielded payment address (𝑑𝐴, 𝑝𝑘𝑑𝐴

ℙ , 𝑑𝑘𝐴,
𝑛𝑠𝑘

𝐴 , 𝑜𝑣𝑘
𝐴 , 𝑖𝑣𝑘

𝐴 , 𝑎𝑘
𝐴, 𝑛𝑘

𝐴, 𝑠𝑘
𝐴, 𝑟𝑖𝑣𝑘

𝐴 ) who wishes to send a valid note 𝑛𝐴 = (𝑑𝐴, 𝑝𝑘𝑑𝐴
ℙ , 𝑣𝐴, 𝜌𝐴, 𝜓𝐴, 𝑟𝑚) 

to a user 𝐵 with orchard shielded payment addresses(𝑑𝐵, 𝑝𝑘𝑑𝐵
ℙ ). Initially, the sender 𝐴 

constructs a transaction with one or more Action descriptions.  For each description, the sender 
𝐴 chose a value 𝑣𝐵 and the distention payment address (𝑑𝐵, 𝑝𝑘𝑑𝐵

ℙ ), then perform the following 
steps.   

i. Calculate that 𝑝𝑘𝑑𝐵
ℙ is a type of orchard public key. 

ii. Calculate 𝑔𝑑𝐵
ℙ = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ𝑜𝑟𝑐ℎ𝑎𝑟𝑑(𝑑𝐵). 

iii. Let 𝜌𝐵 = 𝑛𝑓𝐴, where 𝑛𝑓𝐴, the nullifier of the input note. 
iv. Derive 𝑒𝑠𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||4||𝜌) 𝑚𝑜𝑑 𝑟ℙ. 

If 𝑒𝑠𝑘 ≡ 0, repeat the above steps. 

v. Compute 𝑟𝑐𝑚𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||5||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 
vi. Compute 𝜓𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||9||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 

Let 𝑐𝑣𝑛𝑒𝑡 be the commitment note, which is the input note 𝑣𝐴 minus 𝑣𝐵 of the input note for 
this action transfer using the 𝑟𝑐𝑣.  

vii. Let 𝑐𝑚𝑥
𝐵 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡ℙ (𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚

𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑔𝑑𝐵
ℙ , 𝑣𝐵, 𝜌𝐵, 𝜓𝐵)). 

viii. Let 𝑛𝐵 = (0𝑥02, 𝑑𝐵, 𝑣𝐵, 𝑟𝑠𝑒𝑒𝑑, 𝑚𝑒𝑚𝑜) 

In the above 𝑚𝑒𝑚𝑜 is 512 byte optional part of the transection that allow the user to attached 
arbitrary data to the transaction.  The sender then encrypt the note 𝑛𝐵 to the recipient diversified 
transmission key 𝑝𝑘𝑑𝐵

ℙ  with diversified base 𝑔𝑑
ℙ, and to the outgoing viewing key 𝑜𝑣𝑘, resulting 

the transmitted note ciphertext (𝑒𝑝𝑘
ℙ , 𝐶𝑒𝑛𝑐, 𝐶𝑜𝑢𝑡). The note cipher is then included in the Action 

description. The details of the Action description are provided in the following section. 

6 Action Description.  
Orchard introduces the notion of Action transfer, each of which can optionally perform an input 
optionally perform an output. An Action description consist of data (𝑐𝑣𝑛𝑒𝑡, 𝑟𝑡𝐵, 𝑛𝑓𝐴, 𝑟𝑘𝐴,
𝑆𝑝𝑒𝑛𝐴𝑢𝑡ℎ𝑆𝑖𝑔𝐴, 𝑐𝑚𝐵, 𝑒𝑝𝑘𝐴, 𝐶𝑒𝑛𝑐

𝐵 , 𝐶𝑒𝑛𝑐
𝐵 , 𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑, 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡, 𝜋) included in a 

transaction that describes the action transfer. The detail of the data are provided as follows; 

i. 𝑐𝑣𝑛𝑒𝑡: is the value commitment to the spent note minus output note.  
ii.  𝑟𝑡𝐴: denote the anchor for the output treestate of the previous block.   

iii.  𝑛𝑓𝐴: is the nullifier for the input note 𝑛𝐴. 
iv. 𝑟𝑘𝐴: is validation key for the 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔𝐴. 
v. 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔𝐴: is the spend authorization signature. 

vi. 𝑐𝑚𝐵: is the note commitment to the output note.  
vii. 𝑒𝑝𝑘: is the ephemeral key that is used shared a secret for encryption. 

viii. 𝐶𝑒𝑛𝑐: is the ciphertext component for the encrypted output note. 
ix. 𝐶𝑜𝑢𝑡: is the ciphertext component that allow the holder of the outgoing cipher key to 

recover the recipient diversified transmission key 𝑝𝑘𝑑𝐵
ℙ  and the ephemeral private 

key 𝑒𝑠𝑘. 



 
 

x. The 𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑 is the flag that is set in order to enable the non-zero valued spends 
in this action.  

xi. 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡: is the flag that is set to enable non-zero valued outputs in this action.  
xii. 𝜋: is the zero-knowledge proof with primary input (𝑐𝑣𝑛𝑒𝑡, 𝑛𝑓𝐴, 𝑟𝑘𝐴, 𝑐𝑚𝑥

𝐴,
𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑𝑠, 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝑠) for the action statement.   

In the following subsections, we discuss the encryption and decryption procedures for 
encrypting the note's plaintext and ciphertext, as well as the Zero-Knowledge Proof, Binding 
Signature, and Authorized Spend Signature in more detail. 

6.1 Encryption  
In Orchard, the note 𝑛𝐵should be sent to user B securely, so that the user can later spend it. 
Therefore, user 𝐴 encrypts the data 𝑛𝐵using symmetric key encryption scheme. The symmetric 
algorithm AEAD_CHACHA20_POLY1305 is used in both the Sapling and Orchard protocols 
for encryption and decryption. Since we know that for symmetric key algorithms, the same key 
is used for both encryption and decryption, so, there must be a secure channel for sharing the 
secret key that will be used for both operations. To achieve this, both the Sapling and Orchard 
protocols use the Diffie-Hellman key exchange protocol to securely share the secret key. The 
complete details of the key exchange protocol and the encryption procedure are provided as 
follows: 

i. Compute the shared secret 𝑠𝑘𝐴𝐵
ℙ = 𝑒𝑠𝑘 ∙ 𝑝𝑘𝑑𝐵

ℙ , where 𝑝𝑘𝑑𝐵
ℙ  is the point of ctEdward 

curve. 
ii. The user 𝐴 compute ephemeral public key 𝑒𝑝𝑘

ℙ = 𝑒𝑠𝑘 ∙ 𝑔𝑑𝐵
ℙ  

iii. Derive a symmetric key 𝐾𝐴𝐵 = BLAKE2b − 256(“Zcash_OrchardKDF”, 𝑠𝑘𝐴𝐵
ℙ ||𝑒𝑝𝑘

ℙ  ).  
iv. Next encrypt the data 𝐶𝑒𝑛𝑐 = 𝐸𝑁𝐶𝐾𝐴𝐵(𝑛𝐵) 

If 𝑜𝑣𝑘 =⊥ 

Choose a random 𝑜𝑐𝑘 and 𝑜𝑝 from the set of bytes.  

vi. Let 𝑐𝑣 = 𝑟𝑒𝑝𝑟𝔾(𝑐𝑣). 
vii. 𝑐𝑚∗ = Extract𝔾(𝑐𝑚). 

viii. Let 𝑜𝑐𝑘 = BLAKE2b − 256(“Zcash_Orchardock”, 𝑜𝑣𝑘||cv||cm∗||e𝑝𝑘
ℙ ).  

ix. Let 𝑜𝑝 = (𝑝𝑘𝑑𝐵
ℙ ||𝑒𝑠𝑘). 

x. Let 𝐶𝑜𝑢𝑡 = 𝐸𝑁𝐶𝑜𝑐𝑘
(𝑜𝑝). 

6.2 Decryption using incoming Viewing Key 
Let (𝑒𝑝𝑘

ℙ , 𝐶𝑒𝑛𝑐, 𝐶𝑜𝑢𝑡) be the transmitted ciphertext from the output description. The recipient 𝐵 must 
decrypt 𝐶𝑒𝑛𝑐 using the ephemeral key. However, only the holder of 𝑜𝑣𝑘  can decrypt the ciphertext 𝐶𝑜𝑢𝑡. 
The step-by-step decryption procedure is as follows: 

i. Compute the share secret 𝑠𝑘𝐴𝐵
ℙ = 𝑖𝑣𝑘

𝐵 ∙ 𝑒𝑝𝑘
ℙ . 

ii. Derive symmetric key 𝐾𝐴𝐵 = BLAKE2b − 256(“Zcash_OrchardKDF”, 𝑠𝑘𝐴𝐵
ℙ ||𝑒𝑝𝑘

ℙ  ). 
iii. Decrypt the note ciphertext 𝑛𝐵 = 𝐷𝐸𝐶𝐾𝐴𝐵(𝐶𝑒𝑛𝑐). 
iv. Extract 𝑛𝐵 = (0𝑥02, 𝑑𝐵, 𝑣𝐵, 𝑟𝑠𝑒𝑒𝑑, 𝑚𝑒𝑚𝑜). 
v. Compute 𝑔𝑑𝐵

ℙ = 𝐷𝑖𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑𝐵) 



 
 

vi. Derive the public key 𝑝𝑘𝑑𝐵
ℙ = 𝑖𝑣𝑘

𝐵 ∙ 𝑔𝑑𝐵
ℙ . 

vii. Let 𝜌𝐵 = 𝑛𝑓𝐴  
viii. Compute 𝜓𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||9||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 
vii. Compute 𝑟𝑐𝑚𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||5||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 
ix. The note that receives 𝐵 consist of 𝑛𝐵 = (𝑝𝑘𝑑

𝐵, 𝑑𝐵, 𝑣𝐵, 𝜓𝐵, 𝑟𝑐𝑚𝐵). 

The 𝑜𝑣𝑘 can only decrypt the ciphertext 𝐶𝑜𝑢𝑡. To decrypt the ciphertext 𝐶𝑜𝑢𝑡, the user have 
perform the following steps. 

i. Let 𝑜𝑐𝑘 = BLAKE2b − 256(“Zcash_Orchardock”, 𝑜𝑣𝑘||cv||cm∗||e𝑝𝑘
ℙ ). 

ii. Compute 𝑜𝑝 = 𝐷𝐸𝐶𝑜𝑐𝑘(𝐶𝑜𝑢𝑡). 
6.3 Action Statement 𝝅𝑨  
The spend statement 𝜋𝐴 assure that for a given primary input (𝑟𝑡𝐴, 𝑐𝑣𝑛𝑒𝑡, 𝑛𝑓𝐴, 𝑟𝑘𝐴, 𝑐𝑚𝑥

𝐴,
𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑, 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡) the prover know the auxiliary inputs 
(𝑃𝑎𝑡ℎ, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑔𝑑𝐴

ℙ , 𝑝𝑘𝑑𝐵
ℙ , 𝑣𝐴, 𝜌𝐴, 𝜓𝐴, 𝑟𝑐𝑚𝐴, 𝑐𝑚𝐴, 𝛼𝐴, 𝑛𝑘, 𝑟𝑖𝑣𝑘𝐴, 𝑔𝑑𝐵

ℙ , 𝑝𝑘𝑑𝐵
ℙ , 𝑣𝐵, 𝜓𝐵, 𝑟𝑐𝑚𝐵) 

such that the following conditions hold; 

i. Note Commitment integrity: 𝑐𝑚𝑥
𝐴 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡ℙ (𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚

𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑔𝑑𝐴
ℙ ,  𝑣 𝐴, 𝜌𝐴, 𝜓𝐴)). 

ii. The path and position (𝑝𝑎𝑡ℎ, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) of 𝑐𝑚𝐴 in the Markle tree is valid. 
iii. Value commitment integrity: 𝑐𝑣𝑛𝑒𝑡 = 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣

𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑣𝐴 − 𝑣𝐵). 
iv. Nullifier: 𝑛𝑓𝐴 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡ℙ( PoseidonHash(nkA, 𝜌𝐴) + 𝜓𝐴 𝑚𝑜𝑑 𝑞𝑝 + 𝑐𝑚𝐴 ). 
v. Randomized public key:  𝑟𝑘𝐴

ℙ = 𝛼𝐴 ∙ 𝐺𝑜𝑟𝑐ℎ𝑎𝑟𝑑 + 𝑎𝑠𝑘𝐴
ℙ . 

vi. Diversified address: 𝑝𝑘𝑑𝐴
ℙ = 𝑖𝑣𝑘𝐴 ∙ 𝑔𝑑𝐴

ℙ . 

vii. Incoming viewing key 𝑖𝑣𝑘
𝐴 =  Commit

rivk
A

𝑖𝑣𝑘
𝐴

(𝑎𝑘
𝐴, 𝑛𝑘

𝐴). 

viii. New note commitment 𝑐𝑚𝐴 = 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚
𝑂𝑟𝑐ℎ𝑎𝑟𝑑 (𝑔𝑑𝐵

ℙ  ||𝑝𝑘𝑑𝐵
ℙ || 𝑣𝐵 ||𝜌𝐵||𝜓𝐵 ),  

ix. Enable spend flag 𝑣𝐴 = 0 or 𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑𝑠 = 1. 
x. Enable Output flag 𝑣𝐵 = 0 or 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝑠 = 1. 

6.4 Balance and Binding Signature 
The net value of orchard spend minus output in a transaction is called the orchard balancing 
value denoted by 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑. The consistency of 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑 with value commitment 
in Action description is enforced by the Orchard binding signature. The role of this signature 
in the Orchard pool is to prove that the net value spend by Action transfer is consistent with 
the 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑 field of the transaction. For the binding signature the notion of 
Homomorphic Pedersen commitment is introduced. Let 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ∈ ℙ∗ and 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ∈ ℙ∗ be 
the base elements. Let ⊞ be the binary operation addition of private keys defined as:  

⊞: Sign. Privat × Sign. Privat → Sign. Privat 

Suppose ⊟ be the additive inverse operation defined on the set of private key i.e., 𝑠𝑘 ⊞
(⊟ 𝑠𝑘) = 𝒪⊞. Let ⊕ be the binary operation addition defined on the set of public key: 

⊕: Sign. Public × Sign. Public → Sign. Public 

Let ⊖ be additive inverse binary operation defined on the set of public key i.e., 𝑝𝑘 ⊕
(⊖ 𝑝𝑘) = 𝒪⊖.  Now that a transaction has 𝑛 Action description with value commitment 



 
 

𝑐𝑣1
𝑛𝑒𝑡, … , 𝑐𝑣𝑛

𝑛𝑒𝑡 committing to a value 𝑣1
𝑛𝑒𝑡, … , 𝑣𝑛

𝑛𝑒𝑡 with randomness 𝑟𝑐𝑣1
𝑛𝑒𝑡, … , 𝑟𝑐𝑣𝑛

𝑛𝑒𝑡.  The 
orchard balancing value 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑 = ∑ 𝑣𝑖

𝑛𝑒𝑡𝑛
𝑖=1 , but the validator cannot check it directly 

because the value are hidden by the commitment, therefore validator calculate the transection 
binding validating key: 

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = (⊕𝑖=1

𝑛 𝑐𝑣𝑖
𝑛𝑒𝑡) ⊖ 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0

𝑜𝑟𝑐ℎ𝑎𝑟𝑑(𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑜𝑟𝑐ℎ𝑎𝑟𝑑) 

In the above equation 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 is a function defined as 

𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0
𝑜𝑟𝑐ℎ𝑎𝑟𝑑(𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑜𝑟𝑐ℎ𝑎𝑟𝑑) = [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

𝑐𝑣𝑖
𝑛𝑒𝑡 = [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⊕ [⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡] ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

Implies  

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⊕ [⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡] ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⊖ [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = [⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡] ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

Since the signer know𝑟𝑐𝑣1
𝑛𝑒𝑡, 𝑟𝑐𝑣2

𝑛𝑒𝑡, … , 𝑟𝑐𝑣𝑛
𝑛𝑒𝑡, so they can calculate the corresponding 

signing key  

𝑏𝑠𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 =⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡 

In order to check the implementation the signer should check that either the public key 𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

is equal to creating the public key from the private key 𝑏𝑠𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 mathematically defined as  

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = 𝑏𝑠𝑘

𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

Let SigHash be a transaction hash containing action description using SIGHASH 
type SIGHASH_ALL.  So the validator check the balance by validating  

BindingSig𝑂𝑟𝑐ℎ𝑎𝑟𝑑. Validate𝑏𝑣𝑘
𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑆𝑖𝑔𝐻𝑎𝑠ℎ, bindingSigOrchard) = 1. 

Thus checking the orchard binding signature ensure that the action transfer in the transection 
balance without their individual net value being revealed. 

6.5 Spending Authorization Signature  
In Orchard, the concept of SpendAuthSig is used to prove knowledge of the spending key 
authorizing the spending of an input note. In this document, the notation SpendAuthSigOrchard 
refers to the spend authorization signature scheme. The knowledge of the spending key could 
have been proven directly in the action statement; however, the reason for using a separate 
signature is to allow devices with limited resources, such as hardware wallets, to authorize 
shielded spends. These devices cannot create, and may not be able to verify, zk-SNARK proofs 
for a statement of the size needed using the Halo 2 proving system. The validating key of the 
signature must be revealed in the Action description so that the signature can be checked by 
the validator. To ensure that the validating key cannot be linked to the spending key 𝑎𝑠𝑘 from 
which the note was spent, a signature scheme with re-randomizable keys is used in Zcash. In 
the Action statement, it is proven that this validating key is a re-randomization of the spend 
authorization key 𝑎𝑘 using a randomizer known to the signer. The spend authorization 
signature is applied over the SIGHASH transaction hash, ensuring that it cannot be reused in 
other transactions. 



 
 

Let SigHash be the SIGHASH transaction hash using the SIGHASH type SIGHASH_ALL. Let 
𝑎𝑠𝑘

𝐴  be the spend authorization key. The detail is given as follows; 

i. For each action description the signer choose a fresh randomizer 𝛼. 
ii. Compute 𝑟𝑠𝑘 = 𝛼 + 𝑎𝑠𝑘. 

iii. Let 𝑟𝑘 = 𝛼 ∙ 𝐺𝑜𝑟𝑐ℎ𝑎𝑟𝑑 + 𝑎𝑘
ℙ. 

iv. Generate a proof 𝜋 of the action statement with 𝛼 in the auxiliary input and 𝑟𝑘 in the 
primary input.     

v. Let SpendAuthSig = Sigrsk
(𝑆𝑖𝑔𝐻𝑎𝑠ℎ) 

The resulting SpendAuthSig and the proof 𝜋 are included in the Action description.  

7 Use of Secure Element  

In this section, we discuss how to use a secure element for securing shielded transactions. As 
we know, in order to send a value, the sender initially constructs a transaction with one or more 
action descriptions. The process of producing the action description has already been discussed. 
Suppose we have two devices, 𝐷1 and 𝐷2. Device 𝐷1 is the online device responsible for 
constructing the transaction, which includes 𝑛 action descriptions, while device 𝐷2 is the offline 
device, that stores the secret key 𝑎𝑠𝑘 and is responsible for signing the SIGHASH and 
generating theSpendAuthSig, which should be included in the action description. The detail is 
provided below. 

Online Device 𝐷1  Offline Device 𝐷2 
 Tx = (𝑎𝑑𝑟𝑠, 𝐴𝐷1, 𝐴𝐷2, … , 𝐴𝐷𝑛, 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝐷𝑎𝑡𝑎) 
 Where 𝐴𝐷𝑖  are 𝑛 Action Description for all 𝑖. 
 Generate the transaction hash SigHash. 
 For each 𝐴𝐷𝑖 generate a random 𝛼𝑖. 
 Compute a randomize public 𝑟𝑘𝑖 = 𝑎𝑘

ℙ + 𝛼𝑖 ∙ 𝐺. 
 For all 1 ≤ 𝑖 ≤ 𝑛, include 𝑟𝑘𝑖  in the 𝐴𝐷𝑖 .  
 Send 𝛼𝑖 to Device𝐷2.  
 Generate proof 𝜋𝑖 of the action transfer with the 

auxiliary input 𝛼𝑖 and 𝑟𝑘𝑖 as the primary input 
 Receive the Signature SpendAuthSigi. 
 Include the proof 𝜋𝑖 and SpendAuthSigi to 𝐴𝐷𝑖 for 

all 1 ≤ 𝑖 ≤ 𝑛. 
 For all 1 ≤ 𝑖 ≤ 𝑛, Let 𝑏𝑠𝑘 =⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡. 

 Compute the blind signature BlindSign =
𝑆𝑖𝑔𝑏𝑠𝑘(𝑆𝑖𝑔𝐻𝑎𝑠ℎ). 

 Include the blind signature in the transaction 𝑇𝑥 and 
broadcast the transaction with the updated 𝐴𝐷𝑖 to 
the network. 

 

  Store the spend Authorization key 𝑎𝑠𝑘. 
 Receive 𝛼𝑖 and SigHash from Device 𝐷1.  
 Compute randomize secret key 𝑟𝑠𝑘𝑖  

𝑟𝑠𝑘𝑖 = 𝛼𝑖 + 𝑎𝑠𝑘 𝑚𝑜𝑑 𝑞𝕍 
 ComputeSpendAuthSigi = Sig𝑟𝑠𝑘𝑖

(SigHash). 
 For all 𝑖 send SpendAuthSigi to Device 𝐷1. 

 
 

 

           
From the above protocol, it can be seen that the offline device, Device 𝐷2 , which stores the spending 
authorization key, performs just two steps. First, it performs modular addition to combine the spending 
authorization key 𝑎𝑠𝑘 with the randomized element  𝛼𝑖 to generate randomize the secret key 𝑟𝑠𝑘𝑖. Then, 
the device 𝐷2  signs the transaction hash (SigHash) using the RedDSA signature and outputs the 
signature SpendAuthSig𝑖 for each Action description 𝐴𝐷𝑖 . All other steps for the transaction, such as 
generating the proof 𝜋𝑖 and blind signature, can be carried out on device 𝐷1 without revealing the 
spending authorization key 𝑎𝑠𝑘 to device 𝐷1. 


