Orchard Update

By Muhammad
Shahid

For Cryptnox SA

https://cryptnox.com

November 2024

suman121069
For Cryptnox SA

suman121069
https://cryptnox.com

suman121069
November 2024

Contents

o 0 b~ W

7

INEFOTUCTION ettt ettt e bt e e st e e bt e e s ateesabeeesabeeeseeesaseesaneeesareens 3
ADSTIACTION ..ttt sttt et b e b st st e bt bt e b e e s re e e et e e enrean 3
21.1 Pallas @Nd VESTA ...cccueeiuieiiiiiieieeeee ettt 3
2.1.2 Extract FUNCLiON (EXETACEIP)......ccuiiiiiecee e e 3
2.13 HASh 0 FIEI ittt et e sab e sree e sanee s 3
2.1.4 LG o T o 3 = 1] o ISR 4
2.15 Sinsemilla Hash FUNCLIONoouiiiiiiiiieee et 4
2.1.6 Sinsemilla COMMIEMENTSooiiiiiiiieiie ettt e 4
2.1.7 Orchard Note COMMIEMENT ...ccouviiiiiieiee ettt st e s e e sanes 5
2.1.8 Derive INTEINAl FVK ...ttt ettt et et e et esbe e e sanee s 5
2.1.9 DAY o1 AV - 1 o SR 5
2.1.10 7 ePT G FUNCHION. .ottt ettt e e st e e s s bbae e s s bbaeessabeeessnabeeas 5
(0] 0ol o Yo I (1Y A @o]] o To] 411 | AP 5
1o = PP OPPTPP 6
Spending a Valid Coin (Orchard)ccueeeiieiiiiecee ettt ettt et aae e s ra e e eans 7
yA¥ol Ao o T B L=TYol o] o] 4T] o VPN 7
6.1 L= o] Y7 o) [0 o N 8
6.2 Decryption using inCOMING VIEWING KEY ...ccciiiiiiiiiiiiiiiiiiiiiieeee e e e ssrieeeee e e s s ssinene 8
6.3 ACHION SEAtEMENT T4 ..ottt ettt a ettt 9
6.4 Balance and BindiNg SIZNATUIEcoeiiiuiiiieeiiee ettt et e e sttee e e e tae e e e aae e e seatr e e e eenaaeeaeas 9
6.5 Spending AUthOrization SIGNATUIEccocciiii ittt e e eare e e e eareee e eanes 10
USE OF SECUIE EIEMIEBNT ...t s st s 11

1 Introduction

In this document, we discuss the Orchard protocol in detail, as well as the use of secure
elements for shielded transactions within the Orchard protocol. The Orchard protocol was
deployed as part of the Zcash Network Upgrade 5 (NUS), which was activated on the maisnnet
at block height 1,687,104 on May 31, 2022. The NUS5 upgrade introduced several
enhancements, notably the Orchard shielded protocol. This new protocol simplifies and
strengthens Zcash privacy features by improving the efficiency and security of shielded
transactions. The document begins with an abstraction of the different functions used in the
main protocol of Orchard. Next, we discuss the procedure for spending a valid Orchard coin.
Finally, we explain how a secure element can be used for shielded Orchard transactions.

2 Abstraction

Before discussing the key components of Orchard, we will first define some terms and
abstractions that are later used in the Orchard protocol.

2.1.1 Pallas and Vesta

Pallas and Vesta are the elliptic curves used in the Orchard. Vesta is used in the Orchard for
the proof system, while Pallas is used in the application circuit. Both curves are designed to be
efficiently implemented in ZK-SNARK circuits; however, Pallas is the curve used for the ZK-
SNARK application in the Orchard.

In this document, we use the notation IP for the group of points (x, y) that satisfy the equation
of the Pallas curve y? = x3 4+ 5mod qp alonge with the zero element Op. Similarly, the
notation V is used for set of points that satisfies the Vesta curve equation y2 = x3 + 5 mod qy,
where gqp = 225* 4+ 45560315531419706090280762371685220353 and qy = 22°* +
45560315531506369815346746415080538113 are the prime numbers. The order of P is
qy and the order of V is gp.

2.1.2 Extract Function (Extractp)

The Extract function is a mapping from the curve P to the field Z,,, denoted by Extractp,

ap>
defined as follows;

Extractp: P UL— Zg,

x if Q=&Y
Extract,(Q) ={1 if Q=1
0 if Q=0p

2.1.3 Hash to Field

Hash to Field is a function defined as hashy, freld” B™ x B™ —]F(ZJ o

sequence of bytes of orbitrary length. The function for the input hashy, Field (msg,DST) =

where B™ denote the

(ug,uq) is defined as follows;

e LetDST' = DST||length(DST).

e Letmsg' = 0x00'28|| msg || [0,128] || [0] || DST’

e Let by = BLAKE2b — 512([0x00]®, msg")

o Leth, = BLAKE2b — 512([0x00]6, bol||[1]||DST’)

o Leth, = BLAKE2b — 512([0x00]6, bo@b,||[2]||DST")

e Return uy = by mod q; and u; = b, mod q;.

2.1.4 Group Hash

The Group Hash is a function defined as GroupHash®:B"™ x B™ - G. The input to
GroupHash® consists of a pair: the first element of the pair is the domain separator, which
distinguishes the usage of the function for different purposes, and the second element is the
message. Let (D, M) be the input pair the GroupHash® can be calculated as follows;

i. Let DST = D||” — “||Curve name||_XMD:BLACK_SSWU_RO_.
ii. Let(ug,uy) = hashto ;. (M, DST).
iii. Let Qy = map_to_curve_simple_swu(u,)
iv. Let Q; = map_to_curve_simple_swu(u,)

Return is0;,4,,(Qo + Q1)

2.1.5 Sinsemilla Hash Function
The Sinsemilla Hash Function is a collision-resistant hash function based on the discrete

logarithm problem over elliptic curves. This hash function is specifically designed for Zcash
Orchard, optimizing the use of lookups available in recent proof systems. The Sinsemilla Hash
function can be denoted by SinsemillaHashToPoint: B" X B™ — P U {1} defined as follows;

i. Computen = ceiling (w)

ii. Letr=(nxk)—length(M)

iii. Concatenate 0" with the message M, i.e., M' = M||0"

iv. Dived the message M’ into n sub blocks of sizek, i.e., my, my, ..., m,,.
v. LetQ(D) = GroupHash®("z.cash: SinsemillaQ", D)

vi. LetS(m) = GroupHash®("z.cash: SinsemillaS", m)

vii. Define a binary operation

(x'}’)+(x"y,) lf (x’}’)iotpi(x,,y')
and

(x,y) #L# (x',y")
1 otherwise

(x,y) % (x,y) =

viii. Let Acc = Q(D).
ix. Fori form 1 upto n:
Acc = (Acc % S(m;)) = Acc

Return Acc.

2.1.6 Sinsemilla Commitments
The Sinsemilla commitment is a commitment function that is based on Sinsemilla hash

function, with additional randomized point on the Pallas curve. Mathematically the
commitment can be written as;

M’ + 1 - GroupHash®(D||"-r","") if M' #1

SinsemillaCommit,.(D, M) = { i
1 otherwise

In the above equation, M’ = SinsemillaHashToPoint(D||"-M", M). The Commit function
1s defined as follows;

Commiti‘i"’,‘k (x,y) = Extractp(SinsemillaCommit, ("z.cash:Orchard-Commitlvk", x||y)).

2.1.7 Orchard Note Commitment

When a note is created through a transaction, only a commitment to its content is publicly
disclosed in the transaction's Action description. This commitment is added to the note
commitment tree when the transaction is recorded on the block chain. This ensures that the
value and recipient remain private, while the ZK-SNARK proof verifies the note’s existence
on the block chain when it is spent. In the Orchard to create a note Sinsemilla Commitment has
been used, the detail is given as follows;

NoteCommitlrchard(x, y) = SinsemillaCommit, ("z.cash:0rchard-NoteComit", x||y)

2.1.8 Derive Internal FVK
The function to derive internal FVK is denoted by DerivelnternalFVK®rehard defined as
follows;

i. Let K = ry,;, represented in little-endian order.

ii. = Black2b — 512("Zcash_Expend",K,0x83||a,||ny) mod rp

1ii. Return (ak,nk, T

2.1.9 Diversify Hash
Let GroupHash® be as defined in 6.1.5, which is a function that map a string of bytes into the
point of Pallas and Vesta Elliptic curve Point. Using the group hash the diversify hash can be

calculated as follows;
DiversifyHash0ehard(q) = {GroupHash[P("Z.cash:Orchard-gd", " ifP=0p
P otherwise

Where P = GroupHash® ("z.cash:Orchard-gd", d).

2.1.10 reprg Function

Let G be an Elliptic, then the reprg is function from G to the set of bytes of length [, defined
as follows;

r.
Wkinternal

YKinternal”

reprg(0g) =0

x mod qg + 2%°° if y = 1mod 2

reprg((x,y)) = {x mod qg if y=0mod 2

3 Orchard Key Component.
A new Orchard spending key can be generated by choosing a random sequence sk . From the
spending key sk , generate the following keys, generate the spend authorization key ag,
nullifier deriving key n; and the key for commitment randomness given as follows

ag, = Black2b — 512("ansh_Expend",| |sk| |6) mod 1p

ny, = Black2b — 512("Zcash_Expend",||sk||7) mod qp

Tk = Black2b — 512("ansh_Expend",| |sk| |8) mod 1p
From the spend authorization, compute the public key that validates the spend authorization,
called the "validate spend authorization key" at defined as follows

aE’ = ag - Gorchard
a, = Extractp(ag, - GOThard)
From the n; and a; compute the incoming viewing key i, using the Commit function defined
as follows;
I Commiti‘i"’fk(ak,nk)

Let K = r;,, represented in little-endian order and suppose

R = Black2b — 512("ansh_Expend",||K||0x82||ak||nk).
(@rier Tivkyy,,nq,) = DerivelnternalFVKO™hard (g, ny 7y
Let dj, be the first 32 bytes of R and o0, be reaming 32 bytes of R and Kpterna =
represented in little-endian order.

Rinternai = Black2b — 512("ansh_Expend",|IKl-nternall|0x82||ak||nk).
Let dy,, ... be the first 32 bytes of Ripternai and 0y, be reaming 32 bytes of Rinternai-
Afterward create a new diversified payment address from the given incoming viewing
key (d, iyx). To do this first choose a diversifier index uniformly and calculate the diversifier
d and the diversified transmission key pk,, the procedure is given as follows;

d = FF1 — AES256,,(*", Index)
gY = DiversifyHash(d)
pkg = lypk gg
FF1-AES256 is a format-preserving encryption algorithm that uses AES-256. It provides a
secure pseudo-random permutation for a fixed empty string “” as a tweak. The relationship
between the key components of the Orchard is depicted in Fig 4.

rinin ternal

Orchard
Shielded payment address
AL
r 2

Diversifier ‘ d —)pkd ‘ Transmission key

f,;mT T

Incoming ‘] Outgoing
viewing key \ T / | viewing key
Full viewing

Key { ‘ ak rivk
ovk

L
__ sk

Spending key

Figure 1 Orchard Key Components

4 Note
The orchard note is the set (d, pky, v, p, Y, recm), where d is the diversifier, pk, is diversifier

public key address, v is the value of the coin, p and 1 is the value to compute the nullifier and

rcm is the random commitment trapdoor.

5 Spending a Valid Coin (Orchard)

Let A be wuser with and orchard shielded payment address (dA,ka)A,dkA,

N, 0, Lo, aft, ni, s, r{4,) who wishes to send a valid note n# = (d4, kaA, v4, p4, P4, r™)
to a user B with orchard shielded payment addresses(d?, pkgs). Initially, the sender A
constructs a transaction with one or more Action descriptions. For each description, the sender
A chose a value v? and the distention payment address (d?, pkgjg), then perform the following

steps.

i. Calculate that pkggis a type of orchard public key.
ii. Caleulate gbs = DiversifyHasho™hrd(dP).

iii. Let p? =nf4, where nf4, the nullifier of the input note.
iv. Derive eg, = Black2b — 512("Zcash_Expend"||rseed||4||p) mod rp.

If eg, = 0, repeat the above steps.

v. Compute rcm® = Black2b — 512("Zcash_Expend"||rseed||5||p?) mod 7.
vi. Compute Y? = Black2b — 512("Zcash_Expend"||rseed||9||p?) mod 1p.

Let cv™t be the commitment note, which is the input note v4 minus v2 of the input note for
this action transfer using the 7,,,.

vii. LetcmB = Extractp (NoteCommit%flhard(ggB, vB,pB,tlJB)).

viii. Letn® = (0x02, d®, vE, rseed, memo)

In the above memo is 512 byte optional part of the transection that allow the user to attached
arbitrary data to the transaction. The sender then encrypt the note n® to the recipient diversified
transmission key pkng with diversified base g¥, and to the outgoing viewing key 0,, resulting
the transmitted note ciphertext (eg o CE¢, COU). The note cipher is then included in the Action
description. The details of the Action description are provided in the following section.

6 Action Description.

Orchard introduces the notion of Action transfer, each of which can optionally perform an input
optionally perform an output. An Action description consist of data (cv™®,rt?, nf4,r,a,
SpenAuthSig4,cm®, epk?,CE ., CE,., enableSpend, enableOutput,) included in a
transaction that describes the action transfer. The detail of the data are provided as follows;

i. cv™: is the value commitment to the spent note minus output note.
1. rt4: denote the anchor for the output treestate of the previous block.
iii. nf4:is the nullifier for the input note n”.
iv. rk4:is validation key for the SpendAuthSig4.
v. SpendAuthSig?: is the spend authorization signature.
vi. cm?®: is the note commitment to the output note.
vil. ey is the ephemeral key that is used shared a secret for encryption.
viii. C®™: is the ciphertext component for the encrypted output note.
ix. C°%: is the ciphertext component that allow the holder of the outgoing cipher key to
recover the recipient diversified transmission key pkgB and the ephemeral private
key egy.

x. The enableSpend is the flag that is set in order to enable the non-zero valued spends
in this action.
xi. enableOutput: is the flag that is set to enable non-zero valued outputs in this action.
xii. m: is the zero-knowledge proof with primary input (cv™t nf4,rk4,cms,
enableSpends, enableOutputs) for the action statement.

In the following subsections, we discuss the encryption and decryption procedures for
encrypting the note's plaintext and ciphertext, as well as the Zero-Knowledge Proof, Binding
Signature, and Authorized Spend Signature in more detail.

6.1 Encryption

In Orchard, the note n®should be sent to user B securely, so that the user can later spend it.
Therefore, user A encrypts the data n®using symmetric key encryption scheme. The symmetric
algorithm AEAD CHACHA20 POLY 1305 is used in both the Sapling and Orchard protocols
for encryption and decryption. Since we know that for symmetric key algorithms, the same key
is used for both encryption and decryption, so, there must be a secure channel for sharing the
secret key that will be used for both operations. To achieve this, both the Sapling and Orchard
protocols use the Diffie-Hellman key exchange protocol to securely share the secret key. The
complete details of the key exchange protocol and the encryption procedure are provided as
follows:

P

48> Where pkgg is the point of ctEdward

i. Compute the shared secret skip = eq - pk
curve.
ii. The user A compute ephemeral public key eEk = eg " gg)g
iii. Derive a symmetric key K, = BLAKE2b — 256(“Zcash_OrchardKDF”, SkaHeEk).

iv. Next encrypt the data C"¢ = ENC,,,(n®)
Ifovk =1
Choose a random o, and op from the set of bytes.
vi. Letcv = reprg(cv).
vii. cm* = Extractg(cm).
viii. Let o, = BLAKE2b — 256("ansh_0rchardock", ovk||cv||cm*||e§k).

ix. Letop= (pk53||esk).
x. LetC =ENC,_ (op).

6.2 Decryption using incoming Viewing Key
Let (egk, Ce"™¢, CoU) be the transmitted ciphertext from the output description. The recipient B must

decrypt €™ using the ephemeral key. However, only the holder of 0, can decrypt the ciphertext C°%¢,
The step-by-step decryption procedure is as follows:

i. Compute the share secret skip = ipy, * €py.
ii. Derive symmetric key K,z = BLAKE2b — 256(“Zcash_OrchardKDF”, skl | |e£’k).
iii. Decrypt the note ciphertext n® = DECy 45 (CET).
iv. Extractn® = (0x02, d®, v, rseed, memo).
v. Compute gty = DiersifyHash(d?)

vi. Derive the public key pkls = i5, - gls.
vii. Let p? =nf4
viii. Compute Y& = Black2b — 512("Zcash_Expend"||rseed||9||p?) mod 1p.
vii. Compute rcm? = Black2b — 512("Zcash_Expend"||rseed||5||p?) mod 1p.
ix. The note that receives B consist of n® = (pk5,d5, v, 8, rem?).

The 0, can only decrypt the ciphertext C°%t. To decrypt the ciphertext C°%¢, the user have
perform the following steps.

1. Leto. = BLAKE2b — 256("ansh_0rchardock”, ovk||cv||cm*||eg)k).

ii. Compute op = DEC,, (C°%Y).
6.3 Action Statement 74
The spend statement 4 assure that for a given primary input (rt4, cv™®t, nf4,rk4, cm4,
enableSpend, enableOutput) the prover know the auxiliary inputs
(Path, Position, ggA, pkgg, v, p4, Y4, rem4, em?, ad, ng, rivk4, gg)B, pkg),;, vE,YB, rem?B)
such that the following conditions hold;

i. Note Commitment integrity: cm# = Extractp (NoteC ommitZnehard(gh,, v4, pA,l/)A)).

ii. The path and position (path, position) of cm4 in the Markle tree is valid.

iii. Value commitment integrity: cv™ = ValueCommitZLherd(v4 — vB).
iv. Nullifier: nf4 = Extractp(PoseidonHash(nk,, p#) + ¥4 mod qp + cm4)
v. Randomized public key: 704 = a? - Gohd 4 qf 4.

. . . . P _ . . P
vi. Diversified address: pkja = i,,a - g a-
.. . . . A . iAk A A
vii. Incoming viewing key i, = Commit % (aj,ng).
Tivk

viii. New note commitment cm4 = NoteCommitZ/chard (ggs ||pk53

v8 [Ip® 1|y),
ix. Enable spend flag v = 0 or enableSpends = 1.
x. Enable Output flag v® = 0 or enableOQutputs = 1.

6.4 Balance and Binding Signature

The net value of orchard spend minus output in a transaction is called the orchard balancing
value denoted by vPalanceorchard e consistency of pPalanceorchard with value commitment
in Action description is enforced by the Orchard binding signature. The role of this signature
in the Orchard pool is to prove that the net value spend by Action transfer is consistent with
the pbalanceOrchard fie]q of the transaction. For the binding signature the notion of
Homomorphic Pedersen commitment is introduced. Let Vo7"@7@ g P* and RO7"%7@ € P* be
the base elements. Let FH be the binary operation addition of private keys defined as:

H: Sign. Privat X Sign. Privat — Sign. Privat

Suppose H be the additive inverse operation defined on the set of private key i.e., sk FHH
(H sk) = Og. Let @ be the binary operation addition defined on the set of public key:

@: Sign. Public X Sign. Public — Sign. Public

Let © be additive inverse binary operation defined on the set of public key i.e., pk ©
(©pk) = 0Og. Now that a transaction has n Action description with value commitment

cv, ..., cvlet committing to a value v]¢Y, ..., v with randomness rcvé, ..., rcvet. The

orchard balancing value p?alanceorchard — v g,net byt the validator cannot check it directly
because the value are hidden by the commitment, therefore validator calculate the transection

binding validating key:

bg}:chard — (@?:1 C,vinet) e Valuecommitgrchard(vbalanceorchard)

In the above equation ValueCommit{™"* ¢ is a function defined as

Valuecommitgrchard (vbalanceorchard) — [?:1 vinet] . Vorchard

net _ n nety , yyorchard n net orchard
cvp = [l v’V @ [Hiz, revi™] - R
Implies

bg}:chard — [ln=1 vinet] . Vorchard @ [;l=1 rcvinet] . Rorchard e [11_1=1 vlnet] . Vorchard
bo}r{*chard — [net] . Rorchard
v

n
i=1 TCV;

Since the signer knowrcvl®t, rcvyet, ..., rcv*et, so they can calculate the corresponding
signing key

orchard _mn net

bsk =ti=1 TCV;

In order to check the implementation the signer should check that either the public key bS5 ¢herd

is equal to creating the public key from the private key b2y "% mathematically defined as

bo}:chard — bo}:chard . Rorchard
v s

Let SigHash be a transaction hash containing action description using SIGHASH
type SIGHASH_ALL. So the validator check the balance by validating

BindingSigo”h‘"d.Validatebokrcham (SigHash, bindingSigOrchard) = 1.
v

Thus checking the orchard binding signature ensure that the action transfer in the transection
balance without their individual net value being revealed.

6.5 Spending Authorization Signature

In Orchard, the concept of SpendAuthSig is used to prove knowledge of the spending key
authorizing the spending of an input note. In this document, the notation SpendAuthSig©rchard
refers to the spend authorization signature scheme. The knowledge of the spending key could
have been proven directly in the action statement; however, the reason for using a separate
signature is to allow devices with limited resources, such as hardware wallets, to authorize
shielded spends. These devices cannot create, and may not be able to verify, zk-SNARK proofs
for a statement of the size needed using the Halo 2 proving system. The validating key of the
signature must be revealed in the Action description so that the signature can be checked by
the validator. To ensure that the validating key cannot be linked to the spending key ag, from
which the note was spent, a signature scheme with re-randomizable keys is used in Zcash. In
the Action statement, it is proven that this validating key is a re-randomization of the spend
authorization key a;, using a randomizer known to the signer. The spend authorization
signature is applied over the SIGHASH transaction hash, ensuring that it cannot be reused in
other transactions.

Let SigHash be the SIGHASH transaction hash using the SIGHASH type SIGHASH_ALL. Let
aZ, be the spend authorization key. The detail is given as follows;

i. For each action description the signer choose a fresh randomizer a.
it. Compute rg, = a + agy.
iii. Letrk =a-GoTh%d 4 qf.
iv. Generate a proof m of the action statement with a in the auxiliary input and 7y, in the
primary input.
v. Let SpendAuthSig = Sig, , (SigHash)

The resulting SpendAuthSig and the proof m are included in the Action description.

7 Use of Secure Element

In this section, we discuss how to use a secure element for securing shielded transactions. As
we know, in order to send a value, the sender initially constructs a transaction with one or more
action descriptions. The process of producing the action description has already been discussed.
Suppose we have two devices, D; and D,. Device D; is the online device responsible for
constructing the transaction, which includes n action descriptions, while device D, is the offline
device, that stores the secret key ag, and is responsible for signing the SIGHASH and
generating theSpendAuthSig, which should be included in the action description. The detail is
provided below.

Online Device D; Offline Device D,
e Tx = (adrs,AD,,AD,, ..., AD,,, Addition Data) o Store the spend Authorization key ag,.
o Where AD; are n Action Description for all i. pe Receive a; and SigHash from Device D, .
o Generate the transaction hash SigHash.—— e Compute randomize secret key 7y,
e For each AD; generate a random «;. Tsk, = @ + age mod qy
e Compute a randomize public 1y, = al +a;-G. o ComputeSpendAuthSig; = Sig,, (SigHash).
e Forall1 < i < n, include 73, in the AD;. —e For all i send SpendAuthSig; to Dlevice D;.
e Send a; to DeviceD,.

Generate proof m; of the action transfer with the

auxiliary input a; and 7y, as the primary input

e Receive the Signature SpendAuthSig,. ¢———

e Include the proof m; and SpendAuthSig; to AD; for
alll<i<n.

e Forall1 <i < n, Let by, =AL, rcv™t.

o Compute the blind signature Blinds;g, =
Sigp, (SigHash).

e Include the blind signature in the transaction T, and

broadcast the transaction with the updated AD; to

the network.

From the above protocol, it can be seen that the offline device, Device D, , which stores the spending
authorization key, performs just two steps. First, it performs modular addition to combine the spending
authorization key ag;, with the randomized element «; to generate randomize the secret key 75y, Then,
the device D, signs the transaction hash (SigHash) using the RedDSA signature and outputs the
signature SpendAuthSig; for each Action description AD; . All other steps for the transaction, such as
generating the proof m; and blind signature, can be carried out on device D; without revealing the
spending authorization key agy, to device D;.

