Zcash Overview

By
Muhammad Shahid

For Cryptnox SA

https://cryptnox.com/
November 2024

suman121069
 For Cryptnox SA

suman121069
 https://cryptnox.com/

suman121069
November 2024

Contents

1
2
3

INEEOAUCTION ..ttt et sttt e et e bt e et e s aeeenneenee 4
Transparent TTaNSECHION.cccueiiriieeiiieeerie et et eerteeesteeesteeeeeeeestaeesssaeesseeessseeensseaenns 5
ZRTOCASN. ... ettt ettt e ee 5
3.1 Generate AdAIESS ..coueiiiieiieiiiei ettt 5
3.2 M ittt b et h e bt s a e bt et ht et et naeen 5
3.3 Mint Transection VerifiCationcccevieririirieniieieniesieeiesitesieee et 6
3.4 POUT TTANSECHION ..eoutiiuiiiieiieiieeitete ettt ettt ettt st sb et bt et e e s et e bt et e sbeenteenesanens 6
3.5 Pour Transection VerifiCationccccveeririirieniieiienienieeiesitesteee sttt 7
3.6 RECEIVE TTaNSECLIONoviiuiieiiiiietieie ettt ettt ettt et sttt et e nae e seeens 7
Sprout Shielded TranSECtioN..........cocuiiiiiiiiieiie ettt ettt et 9
4.1 KEY GONETALION ..ottt ettt ettt ettt et st sae ettt sbe et st e saeebeeanes 9
B2 NOE ettt ettt ettt e h e e bt e e bt e e et te e e be e e abeeeeabee s 10
4.3 SPending NOTEcc.ooiiiiiiiiiiiteeet ettt sttt 10
4.3.1 Key Derivation fUnCHON.c.ceoieeiieriieiiieiieeieesie ettt see e e seneennees 10
4.3.2 ENCryption (SPrOUL) ..ecceieciieeieeiiieeieeieeeteeeiee et esiteeveesteeeseesseessseessaessseesseesnsees 11
4.3.3 ZK-SNARK Statements..........coceeriiriiiniiiiiieieeieesieeiee et 11
4.4 JointSplit Transfers and DeSCriptionccveevueeriiieiiieniieiiierie et ens 11
A5 SIZNATULE....cuiiiiieiiietie ettt ettt et et e et e e bt e bt e eabeesbbeeabeesatesnseesseesnseesseesnseennseans 11
4.6 RECEIVING INOTE. ..outietieiiiieiie ettt ettt ettt et et e st e bt e e bt e satesnbeesaeeeabeesseesaseenaeaens 12
4.6.1 Key Derivation FUNCHON........ccceiiiiiiiiniiiiiicecceeeee e 12
4.6.2 Decryption (SPIrOUL)ccceevuiiriieiiniieieeierit ettt 12
Sapling Shielded TranSeCtioncccueeeriieiiiieeiieeeee et erree e e e e e aee e s aeeesereeenenes 12
T B (o) A € 157 1 1<) 15 10) NP PSRR 12
5.2 NOLE ettt et et et s 14
5.3 Spend a Valid COin c.ceuiiiiiiiiie ettt e n 14
5.4 SPend DESCIIPION ..ueeeeiieiieeiieeitie ettt ettt et tee et et et e et e e bt e s seeenbeesseeenseennee 14
541 Output DeSCIIPHIONiiiiiieiieiiieiieeie ettt ettt ettt saae b e e 15
54.2 Key Derivation FUNCHON.........c.ooiiiiiiiiieiieeeeee et 16
Orchard Shielded TranSeCtionccceecueriiriiriiinienieeiereee ettt 18
6.1.1 Pallas and Vestac..ooouiiiiiiiiiieee s 18
6.1.2 Extract Function (EXtractP)..........cccoooiiiiiiiieiiieeiecceecee e 18
6.1.3 Hash to Field ..o 18
6.1.4 Group Hashcccuiieiieeeeee et 19

6.1.5 Sinsemilla HasSh FUNCHION «...eeeiiieeeeeeeee e aaeees 19

7

6.1.6 SINSEMIIA COMMUITINENTS «..veee ettt et e e et eee e e e e e e eeeeeereaaeeeaaeees 19

6.1.7 Orchard Note COMMItMENT......cc.ecciriiiriiniiriiniieiereeneeeetese e 20
6.1.8 Derive Internal FVKcccooiiiiiiiii e 20
6.1.9 Diversify Hashccoooiiiiiiiiiiie e 20
6.1.10 7ePTG FUNCHONooiiiiiiieiiecieeieeee ettt ettt e b 20
6.2 Orchard Key COMPONENL.cccuiiiiiiiieiiieiieeie et ete et sre st eeee e e ssaeeseesnaeenseenens 20
0.3 INOTE . 21
6.4 Spending a Valid Coin (Orchard)...........cccoevieiiiiiiiniieiecie et 21
0.4.1 ENCTYPHOMN . .cutiiiiiiiieiieeie ettt ettt ettt e et e e e et essaeebeessaeesseessneenseensaeenseenens 22
6.4.2 Decryption using incoming Viewing Keycccccoceriiviniiiniininiinennenicnene 23
0.5 ACHION DESCIIPHION. ...eiiiiiiiiiiiieiie ettt ettt ettt et e e e e e 23
6.5.1 Balance and Binding Signature...........cccceceeiirienienieniiienicecie e 24
6.5.2 Spending Authorization SIZNAtUIE..........ccceeeirierieriiniiieeieneee e 25

CryptographiC PIIMILIVEccveeiiiiiieiieeieerie et eeiee et esieeete et eebeestaesbeesaeeesseesssesseessneans 26

1 Introduction
The aim of this document is to provide an in-depth overview of the Zcash protocol, detailing

both the protocol itself and the underlying cryptographic primitives. Zcash supports two types
of payment schemes: the transparent payment scheme and the shielded payment scheme. The
difference between these two payment schemes, is that in the transparent payment scheme, all
user information’s, such as transaction volume and user addresses are publicly accessible. In
contrast, the shielded payment scheme conceals this information, making it unavailable to the
public.

Zcash offers users the flexibility to choose between privacy and transparency, with two types
of addresses: shielded addresses and transparent addresses. Shielded addresses are used for
shielded payments, while transparent addresses are used for payments where user information
is public. In addition, there is flexibility in transactions between shielded and transparent
addresses. Transactions from shielded addresses to transparent addresses and vice versa are
supported. The transection details remain private from the shielded addresses to transparent
addresses, while the transaction details are revealed when transferring from transparent to

shielded addresses. The complete detail is illustrated in Figure 1.

Basic ZEC Spend Types

Public Shielding Shielding Shielding

X ZEC X ZEC ? ZEC ? ZEC
X ZEC J ? ZEC l X ZEC] ? ZEC

Figure 1 Sending Between Shielded and Transparent Addresses

In the following sections of this document, we discuss both the payment schemes, how these
payment schemes work, and the cryptographic primitives used within them, especially the
shielded payment scheme. Section 2 provides a brief overview of the transparent payment
scheme. The first ZeroCash protocol for the shielded payment scheme is described in Section
3. Section 4 covers the Sprout shielded payment scheme. The Sapling update is discussed in
Section 5. Section 6 is devoted to the Orchard update of the Zcash shielded payment scheme.

2 Transparent Transection.

Transparent payment scheme uses transparent addresses for the transparent transaction. So, in
this payment scheme after the transection the address and the associated value are publicly
recorded on the Zcash block chain just like bitcoin. The addresses of transparent payment start
with the letter ¢, and it does not use Zero Knowledge proof (ZKP) to protect transection data
for value sent or received it. However, for authentication the transparent input signatures use
ECDSA over the secp256k1 curve, as in Bitcoin.

3 ZeroCash
There are two types of shielded transactions, named mint and pour. The mint transaction is
used to mint a new coin, denoted byt x,,,;,¢. The pour transaction is used to transfer a coin from
one user to another, denoted by tx,,,,,,-. In the Shielded Payment system, each user has shielded
addresses(addryy, addrg), called public and private addresses, and some public
(PKsig» Vipour) and private (sKgig, PKpoyr) parameters. The public address consists of the
tuple addry, = (apk, Pkenc), where pkey, is the encryption key for an asymmetric encryption
scheme and the ay is a user address used to receive coins. The private address consists of the

tuple addrg, = (agk, SKgec), Where skg.. is the secret decryption key for an asymmetric
encryption scheme. ag, is a spending key; without knowledge of it, no one can spend the coins.
The public parameters consist of a signature verification public key pk;, that can be used to
verify signatures used in the protocol and a zero-knowledge verification key ky oy, Similarly,
the private parameters consist of a signature private key skg;, and a zero-knowledge private
key kpour, used in the proof of the ZKP. Additionally, Zcash uses three pseudorandom
functions, i.e., PRE244", PRES™ and PRFxpk with input seed x, where PRE’™ is a collision-
resistant function. In the following subsection, we discuss the algorithms for generating
addresses, mint transactions, pour transactions, the verification algorithm, and the receiving
algorithm in detail.

3.1 Generate Address

For a security perimeter A generate public and private (PKene,Skgec) < Gen(174). Next
generate a random number ag, and compute ayy i.€., Ay = PRFa‘ﬁdr (0). The public address
addry, = (apk, Dkenc) and the private addrs, = (agk, Skqec). The output of address generate
algorithm is (addryy, addr).

3.2 Mint
To mint a coin with the desired value v € { 0,1, ..., Vpqy }, the user U with public address a,

initially generates three random number sequences p, r,ands. Then, compute k =
COM,(apk || p) and cm = COM;(v|| k). The coin is ¢ = (apk, v,p,7,s,cm) and the

transaction tx,,;,; = (cm v, k, s). The transaction tx,,;,; 1s accepted to the ledger when the
correct amount is deposited.

3.3 Mint Transection Verification

To verify the mint transection tX,,;,; = (cm, v, k, s), compute cm’ = COMg(v||k) and out
b =1if cm' == cm else b = 0. It mean the transection tx,,;; is valid if b = 1, otherwise
the transaction is not valid.

3.4 Pour Transection

The pour transaction is used to spend a valid coin by transferring it to another user. The pour
operation consumes the input coin along with the secret address ag;, and public parameter of
the user who spends the coin, and the public address a,, and public parameter of the users who
receive the coin.

Step 1. Suppose a user A with the address key pair (addrsz, addrf,) wishes to send his coin
cA = (aﬁk, v, pA, 14,54, cm#?) to the target addresses addry, and addrpck belonging to users
B and C. Initially, the user A produces two new coins c® and c¢, with total value v = v% +
v¢. For new coins user A generates a set of random numbers {p? , p¢,78,7¢,s5,s¢}. Then, it
computes k® = COM,z(aby|| p?) and k¢ = COM,c (aGi||p®). Afterwards, user A
computes cm? = COM z(v®|| k® and cm® = COM c(v¢|| k©). This yields two new coins

B _ (B B BB B . ,B €C — (AC 2.C AC C oC i C
c® = (apk,v ,p°, 77,87, cm”) and ¢* = (apk,v ,p°, 1%, 5%, cm").

Step 2. Now, in order to allow users B and C to spend their coins ¢ and c¢, user A needs to
send the secret values corresponding to the new coins to B and C securely. For that, in step
two, user A encrypts the secret values: Cp = ENC,s5 (vg,p® % s%) andC; =
ENCyc(vc, p€,7¢,s¢) using an asymmetric key encryption scheme with the public keys
pkB, . and pk§,, of users B and C.

Step 3. In step four, user A generates a signature key pair (pkg;g, Skgiy) and computes the
hash of the public signature key, i.e., hy;y = H(pks;4), and then generates a random sequence

using b = PREDX (hgy).

Step 4. In step 4, user A generates proof and verification keys (pkpoyr, VKpour) to produce a
ZKP proof 4 for the following NP statement.

Statement: The instance is in the form x = (rt,sn?, cm®?, cm®, v4, hy; g, h). The instance x
consists of the Merkle tree root rt, serial number sn4, coin commitments cm? and cm?¢, the
value of the coin v4,hg;, and h.

Witness: The witness is in the form a = (path,c4, as, cB,c¢). Tt consists of the
authentication path, the information about the old and new coins, and the address secret key.

The user A generates a T4 = ZKPp,o07 (Dkpour, %, @). The proof ZKPyeriry, (DK poyr, m?) is
valid if the following conditions are met.

i. The coin commitment cm4 of ¢4 appears in the ledger and the path is a valid
authentication path for the leaf cm? with respect to the root rt.
ii. The address secret key matches the address public key, 1.e., aﬁk = PRF;%W(O).
S

iii. The serial number sn? of ¢4 is computed correctly, i.e., sn® = PRF ;Z; (pY.

iv. For ¢4, it holds that k4 = COMA (aﬁkaA) and cm? = COMa(v,||k?). Similarly,
for ¢®, itholds that k® = COM, 5 (a,s||p®) and cm® = COM s (vg||k?) and for c€,
it holds that k¢ = COMrc(apkchC) and cm® = COM c(v¢||k©).

v. The random sequence h is generated using the address secret key a’, and hgig, 1.€.,
— pk
h = PRFaglk(hSig)'
vi. Balance is preserved, i.e., v4 = v® + vC.

Step 6: Next, user A signs a set m = {x, 4, C,, Cg} using the secret signing key, i.e., 0 =
Sig(sksig,m).
Step 7: In this step, the user sets a transaction pour tXpey, =

C

A B A A
(rt,sn?, cm”, cm*, v ,pksig,h,n ,Cy,Cg 0).

As a result, the pour transaction tx, ., = (7t, sn?, cm®, cm®, m4) is appended to the ledger.
Since A does not know the pair of secret addresses a5 and ac corresponding to the public
addresses a5 and a,,;c, Therefore, A cannot spend the coins c® and ¢© as A cannot provide
age and ag.c as part of the witness for subsequent pour operations. In addition, to prevent

double spending, if sn is appears in a ledger then reject the transection else sn“ add to the
list.

3.5 Pour Transection Verification

c

To verify the pour transaction tX,ey = (rt,sn?,em®,em,v4, pkg; g, h, 4, Cy, Cp, 0), check

whether sn appears in the ledger L. If it does, output b = 0; otherwise, output b = 1. This
step prevents double spending. Next, check the Merkle root rt in the ledger L. If the rt does
not appear in the ledger L, output b = 0; otherwise, output b = 1. Next, compute hgy =
H(pksig) and set x = (rt,sn?,cm®,cm®, v4, hggy h). Then set m = (x,m4,Cy,Cp) and
verify the signature Vs, (pks;g, m, 0). If the signature o is verified, output b = 1; otherwise,
output b = 0. In the next step, verify the zero-knowledge proof Verify(vkyour, X,). If
the verification is true, output b’ = 1; otherwise, output b’ = 0. In the last step, if b Ab" =
1, it means that the transaction tx, ., is verified; otherwise, reject the transaction txy gy

3.6 Receive Transection

In this subsection, the steps to receive the spent coins are discussed in detail. Suppose user B
receives the pour transaction txpey, = (rt,sn?,cm®?,cm®,v4, pkg g, h, w4, Cs, Cc,0). First,
decrypt Cp using their private key: (vg, p%,78,s8) = DEC,,5(Cp). Then verify the output of
the decryption by checking cm? = COM 5 (vB || COM,5(a,,z|| p®)) Next, check whether
sn® == COM5(a,,z|| p?) does not appear in the ledger L. If both conditions are true, c? =

(addrpk, vg, pB 78,58, cmP) is the new coin for user B to spend.

Setup

Input: Security Parameters A.

Output: Public parameters pp and sp.

Generate (sk, vk) « Gen(1%).

Generate (skg;g, pkyer) < Gen(1%).
Generate (Skgee, PKene) < Gen(1%).
Public parameters pp = (Vk, pkyer, PKgec)-
Secret parameters sp = (sk, skgg, Skqec)-

Vi W e

Create Addresses
Input: Public parameters pp
Output: Address key pair (addr,, addrg).
Randomly sample PRF seed ag.
Compute a,, = PRF,_, (0).
addrpk = (apk' Pkenc).
addrg, = (ask, Skgec)-

B W

Mint
Input: Public parameter pp,coin value v and addr,
Output: Coin ¢ and mint transection Tx,,;,;
Randomly select a PRF seed p.
Random select two trapdoors r and s.
Compute k = COMM,.(a,«||p).
Compute cm = COM M, (v||k).
Set ¢ = (addryy, v, p,1,s,cm).
Set Txpine = (cm, v, k, S)

SAAE I

Verification Transection

Input: Public Parameters pp.

— Transection Tx

— The current ledger
Output: b = 1 if the transaction Tx is valid.

— b = 0ifthe transaction Tx is not valid.

a) Ifgiven a mint transection Tx;,;,¢-

1. Parse Txpin: = (cm,v,k, s).

2. Setcm' = COMM,(v||k).
Ifcm' = 10utputbh = lelseb = 0.
If given a Pour Transection Txp 0y
Parse xpour = (rt,nf,cm, v,pksig,h, n, C,0).
If nf appear in the ledger output b = 0.
If rt does not appear in the ledger output b = 0.
Compute hg;, = Hash(pksig).
Setx = (rt,nf,cm,v, hsig,h,)
Setm = (x,m, C).
Compute V4 (pksig, m, O‘) isnotvalid output b = 0.
Compute V,, (vk, x,) not valid output b = 0.

p—

ONO A WN P TW

Pour

Input: Public parameters pp.

— Markle root rt4.

— User A coin c*.

— User A address secret key addrd,.

— Path? from commitment cm* to root rt4.

— New coin value v5.

— User B public address addr,),.

— User A coin value v4.
Output: New coin c® for B and transection Tx5.

1. Parsec4 = (addr;‘k, v4, p4,r4,s4, cm?).
Parse the secret address addrs,.
Compute nullifier nf4 = PRFa,qu(pA).
Randomly select a PRF seed p®.
Randomly sample random numbers rZ and s&.
Compute k% = COMM .5 (ag||p®).
Compute cm® = COMM ;5 (vE||k?).
Set c? = (addryy, v®, p®, v, cmP).
Encrypt C® = ENC,,5 (v, pP, 7", s7)
A

XN WD

-
o

. Compute hy;;, = Hash(pkg,

. Compute h = PRFa?k(1||hSl-g).

. Setx = (rt4,sn?, cm®,v4, hgg, h).

. Seta = (path?,c4, addrs, cB).

Compute 14 = Prove(vk4, x, a).

. Setm = (x,m, C®).

Compute o = Sign(sks;g, m).

. Set Txpoyr = (rt,nf4, emPv4,pkf,, h,n#, CP,0)

Uy
[y

g S Y
N oUW

Receive Transection
Input: Public Parameter pp.
- Recipient Address (addr, addrg,).
— Current Ledger
Output: New coin c5.
1. Parse addry, = (a5, pkby.).
2. Parse addry = (ab,, skE,,).
3. Parse Txpoy, (rt, nf4, cm®v?, pkf,, h,n4,C8, 0).
4. Decrypt DECgy,, (CP) = (v5,p%, 78, sP)

o Ifcmf =COMM s (vB||C0MMr(agk||pB))
e Ifnf® = PRF,_,(p®) does notappear inledger L.
5. c® = (addry, v?,p?,s®,cmP)

4 Sprout Shielded Transection

4.1 Key Generation

To generate a new Sprout spending key, choose a uniformly random sequence of bits ag;. From
the spending key agy, generate the public address ap, = PRF{497(0), where the pseudo
random function is defined as;

PRF{497(0) = SHA256Compress(1100||ag||08]|0%8),

Afterward, generate the public and private keys (pk,sk) « K eyGenspmut(l’l) for Diffie-
Hellman key exchange over Curve25519. The method of generating the public and private keys
is as: let q be the order of the group. For the private key sk, choose a random number from the
set {2, 3, ...,q — 1} and compute the public key pk = sk - G, where G the generator of the
group Curve25519 is. The keys (apy, pk) are the public addresses used to receive the coin, and
(ask, sk) are the private addresses used to spend the coin.

Sprout
Shielded payment address

A
- —

Paying key ‘ Apk pkenc Transmission key
A

p

' I ~
Incoming o
viewing key { apk SKenc | Receiving key

h. J

=
dsk

p S s

Spending key

Figure 2 Sprout Key Components

4.2 Note

A Sprout note is a tuplen = (ay, v, p,rcm, memo), where ayy is the paying key of the
recipient’s shielded payment address is, v is an integer that represents the value of the coin, p
is the input parameter for the function PRFCZ{ = SHA256Compress(1110|Iask||08||p) to

derive the nullifier of the note. The value rcm is the note commitment trapdoor used for

generating the note commitment, and memo is the sequence of random bytes, called the memo
field.

4.3 Spending Note
Let A and B be two entities, and A wishes to send his coin ny = (ap, v4, rem?, memo) to
entity B. Let (agk, pk®) be the public address of B. The transaction from A to B consists of a

data, called JoinSplit description. For the JoinSplit description, initially A generates public and
private keys for signing the transaction, called the JoinSplitSig key pair.

JoinSplitPrivKey# «— JoinSplitSig. GenPrivate()
JoinSplitPubKey# «— JoinSplitSig. DerivePublic(JoinSplitPrivKey)

Next the sender chooses a random seed randomseed and selects the input node np“.
Afterward the sender A compute

hsig = Blacke2b-256("ZcashComputehSig"|[hSigInput)
Where in the above equation hSiglnput is the string given as follows;
hSigInput = RandomSeed||nf# ||JoinSplitPrivKey”

Subsequently, the sender A choose random number @ and create output note np®. The step
by step procedure of crating the note is given as follows;

Choose uniformly random r¢m? «— NoteCommitSPr°Ut, GenTrapdoor().
Compute p? = SHA256COMPRESS(000]|95|| hs;y).

Compute cm® = SHA256(10110000(|ag ||[v®||p®||[rcm?).

The output note is ny; = (0x00, v5, p®,rcm®, memo®). The sender A then encrypts nj using
a symmetric encryption scheme. Since the same secret key is used for both encryption and
decryption in symmetric encryption, a key derivation function (KDF) is used. The details of
the key derivation function and the procedures for encryption, decryption, signature, and zero-
knowledge proofs are given in the following subsection.

4.3.1 Key Derivation function.
For the secret key derivation the entity A initially chose a secret number s# from the set

{2,3,...,q — 1} and compute ephemeral private key e4? = s4pk? (s4pk® = s4skBG) over
the Curve25519. Afterward A computes a public ephemeral key ez‘,“k = s4G. Next, A uses the
ephemeral private key e? to derive a secret key for the symmetric encryption scheme to
encrypt the data ng and sends it to B, who can use it later. The key derivation function is given
as follows:

K4B = Black-256(“ZcashKDF” ||056||h4,, |[e4Z |lefy k)

4.3.2 Encryption (Sprout)

To encrypt the note plaintext ng , the sender A used a symmetric key encryption scheme AEAD
CHACHA20 POLY 1305 using the derived key K,,,.. For sprout we will denote the encryption
function by ENCyas and the decryption function by DECy4s. So the ciphertext for the
JointSplit description is given a follows;

C® = ENCyas (n5).

4.3.3 ZK-SNARK Statements
For the JointSplit description the entity A generate a ZK_SNARK statement 72, Jointsplit that

assure that for given output parameters (rt4,nf4, cm?,vA4,v® hJ , hP) the prover ie., A

knows the inputs (path4,position4,n4,as,, nB, enforceMarklePath) such that the
following conditions holds;

i. Thenote n? = (a;,lk, v, p?, rem?, memo®) and n® = (a8, v8, pB, rem4, memo4).

ii. For the note n? the path® and position? is a valid Merkle path of depth from note
commitment cm? to the anchor root rt4.
iii. The balance for input v4 and output v? notes satisfied the equation i.e., v4 — v8 >0
iv. The nullifier nf4 = SHA256Compress(1110||ag.||p?).
v. The public address SHA256Compress(1100||ag||0%5).
vi. The non-malleability h* = SHA256Compress(0]|0||000] |a5k||h;4ig :
vii. The uniqueness of p® = SHA256COMPRESS(000]|¢®|| kg,).
viii. The note Commitment integrity cm? = SHA256(10110000||a5k| [v81pB||rem®).

4.4 JointSplit Transfers and Description
Each transection in Sprout consist of zero or more JoinSplit description. A JoinSplit description

consist of the data that describe a shielded value transfer. The data comprises

A
sig’

of a spending input coin is and v® denote the value of the output coin. The anchor of the
spending coin symbolize by rt4. The nf4 is the nullifier of the spending coin and cm? is the
note commitment of the output coin.

A B +A . fA B_A B B A
(v ,vo,rth,nf4, cm epk,randomSeed,h T[ZK]ointSplit’C), where v“ denote the value

4.5 Signature

Since we know that each transaction consists of one or more JoinSplit descriptions, any
transaction that has at least one JoinSplit description must have a JoinSplit signature using
Ed25519. Let "dataToBeSigned" be the hash value of the transaction. In this step, the sender
of the coin computes the signature 0 by signing ‘dataToBeSigned® with the signature private
key “JoinSplitPrivKey?" and includes the public validating key “JoinSplitPublicKey”* and the
signature g4 in the transaction. Since the signing keys used for computing the signature are
ephemeral, the user generates new signature key pairs for every transaction. For each key pair,
the value h4 g given in the JoinSplit description and its integrity proof, provided in the ZK-
SNARK statement, verify that the owner of the private address a2, is authorized to use the
private key. The transection T2 = (JoinSplit, a4, JoinSplitPublicKey#) included JoinSplitSig
submitted to the peer to peer network.

4.6 Receiving Note.

The entity B receive the transaction data consist of JointSplit descriptions. Since the JointSplit
description consist of the note data in encrypted from that entity B will spend letter. So before
the decryption the entity B validate the signature and proof of the transaction. For validating
the signature B used the public signature key of A and validate the signature.
Verif yoimsplitbublickeyA (0") = 1. Next, the receiver validate the proof of the Transection

using proof validation public key. After, validating the proof the receiver derived the secret
key and decrypt the note. The key derivation function and the decryption function is given in
the following subsections.

4.6.1 Key Derivation Function
To derive the secret key the entity B used the ephemeral key ey, and his secret key to compute

a shared secret key eAf = skBel, = skBsk4G the Curve25519. Next, B uses the ephemeral
private key e4? to derive a secret key for the symmetric encryption scheme to decrypt the note
data nj received from B, who can use it later. The key derivation function is given as follows:

K&E = Black-256(“ZcashKDF” [|05¢||hg, leg? llepy [Ipk®)

4.6.2 Decryption (Sprout)
To decrypt the note ciphertext ny, the reciver B used a symmetric key encryption scheme

AEAD CHACHA20 POLY 1305 using the derived key KAE. Since, we used the notation
ENCyas_for the encryption and DECys for the decryption function. The note plaintext for the

JointSplit description is given a follows;
ng = DECK‘;‘,?C(CB)'

After decrypting the note the receiver validate the note commitment that weather cm?is equal
to cm’ or not where cm' = SHA256(10110000(|ap,||v®||p?|lrcm®) and check the
nullifier nf4 in the nullifier set.

5 Sapling Shielded Transection
In this section, we have presented complete detail of the sapling Protocol, used by the Zcash

for shielded transection as of the sapling network upgrade, which satisfies certain security

properties.

5.1 Key Generation
For generating the Sapling key components, a new random Sapling spending key sk is generated by

selecting a random number. From the spending key, derive spend authorizing key ag,, proof

authorization key n,, and outgoing viewing key o, defined as follows:
as, = Black2b — 512("Zcash_Expend"||sk||0)
ng, = Black2b — 512("Zcash_Expend"||sk||1)

oyx = Black2b — 512("Zcash_Expend"||sk]||2)

Afterward, use the spend authorizing key to generate a;, = ag - G, and similarly, use the proof
authorization key to generate n, = ng, - H, where a; and n;, are points on the elliptic curve,
with generators G and H over the Jubjub curve, used for various purposes. Then, generate the

incoming viewing key from a;, and n; as follows:
iy = Black2s — 256("Zcashivk"||a;||nk)

Now, to create a new diversified payment address from the given incoming viewing key i,, repeatedly
choose a diversifier d uniformly at random until the diversifier base g, is not equal to L (i.e., not

invalid). Mathematically, g, can be derived as:
ga = DiversifyHashS®lUnd(d)
DiversifyHash5%®'"9(d) = GroupHashy ("Zcash_gd", d)
The Hash function GroupHashy can be calculated as follows;
H = Black2s — 256("Zcash_gd", U||M)
P = abst;(H)

Compute Q = 8P if Q = 0 return L. Else return Q. Afterward, compute the diversified transmission
key pkg=i,k-9gqs. Thus, the diversified Sapling payment address isd. The set of
parameters (Sk, Qg, Nsk, Opier Lyk, Ak, i, Pk g) 1S the key component in sapling. Furthermore, the

relationship between the Sapling key component parameters is depicted in Fig. 1.

Sapling
Shielded payment address

A
(.)
d _A)pkd

Diversifier

Transmission key

.

Incoming | .
viewing key . le

(Ny ™
Full viewing Outgoing
key { 2L nk ovk viewing key
~ | A— - J
f ')
Proo
authorizing key{ . 31(nsk

Expanded () (
spendingkey{ | ask nsk | OVk |

sk

L

Spending key

Figure 3 Sapling Key Components

5.2 Note
A sapling note is tuplen = (d,pky,v,cm,r), basically it represents the value v €

{0,1,2, ..., V) that is spendable by the user who hold the spending key Where d of the
recipient shielded payment address. pk, is the diversified transmission key of the recipient
shielded payment address, v is the value of the note in zatoshi and r is the random commitment

trapdoor number.

5.3 Spend a Valid Coin

Let user A have a Sapling shielded payment address (sk? , af,, n2,, 0fy, ioe, @i, 1, pk4) and
wish to send his valid coin n? = (dy, pkZ,v4,cm4,14, p4,rcm#) to user B, who has the
Sapling key components (sk5,a5,n5, 05,5, af, nk, pk5). The transaction to spend the
coin consists of a spend transfer and an output transfer. The spend transfer validates the coin,
and with the output transfer, the recipient receives the coin and can then spend it. In the
following subsection, we discuss spend and output descriptions, which include all the data that
describe spend and output transfer.

5.4 Spend Description
The spend description consist of (cv4, cm#, rt4, nf4, iy, Tfk spena, SpendAutSig) where cv? is
value commitment integrity cv4 = vAVSWPUNI 4 rcpARSWPURI — for the base elements

ii.
ii.
1v.

Vi.

Vil.

ysapling and RS®PUNI gver JubJub curve. The parameter cm# is the note commitment. The
parameter nf4 = BLAKE2s — 256(“Zcash_nf’|nk||p") is the nullifier. The rjy = @ - G + ay
is the randomized validating key that should be used to validate SpendAutSig and néKspend
is the ZKP statement and the SpendAutSig is the spend authorization signature.

4.3.1.1 Spend Statement néKSpend

The spend statement 7zxgpeng assure that for a given primary input (rt4, cv?, nf4,rk), the
prover know the auxiliary inputs (Path, Position, g5,pk4,v4,rcv4, a,nsk4,cm4,rem#)
such that the following conditions hold;

The integrity of the note Commitment i.e., cm# = NoteCommit> -2 "8(g4||pkZ||v4).
The path and position (path, position) of cm# in the Markle tree is valid.

The value commitment integrity is valid i.e., cv4 = vAVSPUNG 4 pepARsapling
The order of the group containing g, and ak is not the small.

The nullifier is validated i.e., n;a = BLAKE2s — 256("ansh_nf’| |nk| |pA) .

To prove that rk is randomized public key r,;‘lk = a? + adG.
Diversified address integrity pkZ = i, - g4.

4.3.1.2 Spend Authorization Signature

The spend authorization signature (SpendAuthSig) is used in Sapling to prove the knowledge
of the spending key that authorizes the spending of the input note. In Sapling, the knowledge
of the spending key cannot be proven directly in the spend statement. The motivation for
keeping the signature separate is to allow devices that are limited in memory and computational
capacity, such as hardware wallets, to authorize a Sapling shielded spend. The randomized
signature RedDSA over the JubJub curve is used for signing. The complete details of the spend
authorization signature are as follows:

i. For each spend description the signer chooses a fresh signer randomizer a.
ii. Letr; be the order of the group over JubJub Curve. So, compute a random secret 73 =
aZ, + a? mod r; using spending authorization key a2,.
iii. In the third step compute the private key rsz = af G where G is the generator of the
group.
iv. The SpendAuthSig = RedDSAZ{’n (SigHash), the SigHash is the transection hash

not associated with input.

5.4.1 Output Description

To send a note n to user B, the sender A initially selects a value v® from the set
{0,1,2, ..., Vjax } and constructs an output description. The output description consists of the
data (cv®,cm®, efy, Chuc, Couts ik outpur)- Let (d%,pkf) be the public addresses of user B.
The user A performs the following steps to construct the output description:

i. The user first checks that (d?,pk7) is of the type KAgsqpiing public prime subgroup,
i.e., (dB, pkE) should be a valid ctEdwards curve point on the JubJub curve.
ii. Then, user A chooses a random commitment trapdoor rcv?.
iii. In step 4, user A chooses a uniformly random ephemeral key eZ, .
iv. In this step, user A also chooses a uniformly random commitment trapdoor rcm?.

v. Afterward, user A computes cv? = pBYSWPUnG 4 ycypB Rsavling
Sapling

vi. Next, user A computes cm? = NoteCommit, oo, (g5 ||pkZ||v?).
The note plaintext np® = (leadBytes, d?,v8,rem®, rcv?). Subsequently, user A encrypts
np® through a derived secret key. In the following subsections we have discussed the key
derivation function, encryption and decryption.

5.4.2 Key Derivation Function

To derive the secret key the entity B used the ephemeral key e, and his secret key to compute
the secret key eAf = skBef. = skBsk4G the Curve25519. Next, B uses the ephemeral private
key eAB to derive a secret key for the symmetric encryption scheme to decrypt the note data

ng received from B, who can use it later. The key derivation function is given as follows:

K&v. = Black-256(“Zcash_SaplingKDF” ||e£? ||ey)

4.3.1.3 Encryption

In Sapling, the note plaintext np® should be sent to user B securely so that the user can spend
it later. Therefore, user A encrypts the data np®. For encryption and decryption, a symmetric
algorithm is used in the Sapling protocol. Since we know that symmetric key algorithms use
the same key for both encryption and decryption, so, there must be a secure channel for sharing
the secret key. To achieve this, the Sapling protocol deploys the Diffie-Hellman key exchange
protocol to securely share the secret key. The complete details of the key exchange protocol
and the encryption procedure are given as follows:

i. First, select an ephemeral private key e, randomly.

ii. Compute the shared secret sk48 = eZ, - pk, where pkZ is a point on the ctEdwards
curve.

iii. User A then computes the ephemeral public key ez‘,“k =el " ga.

iv. Apply the key derivation function that we have discussed in the previous subsection

and generate a secret key K45,
v. Next, encrypt the data C5,. = Encyas(np®).
vi. Let Ofk = BLAKE2b — 256(“Zcash_Derive_ock", ||ch||cmB||egk) .
vii. Finally, compute Cpyr = Encocr (pkE Il eZ,)
2.1.1.1 Output Sapling Statement 77y ,ytpu¢

A valid instance of an output statement 7Tzxoyrpye assures that given a primary input
(cv®,cm?, ef),) the prover has the auxiliary input (g§, pk§, vB,rcB, remy,,, e4) such that the
following conditions hold;

vii. The note commitment integrity cm® = NoteCommit> "> "8 (g5 ||pk53||vE).
i. The value commitment integrity is cv® = vBYSaPUng 4 ycpyBRsapling
ii. The order of g5 is small.

iii. The ephemeral key is public key ez‘,“k = el gE.

4.3.1.4 Decryption using incoming Viewing Key
Let (epk?,CE, CB,,) be the transmitted note ciphertext components. The recipient must
decrypt the ciphertext components CZ,. and C2,, of the transmitted note data. The step-by-step

decryption procedure is as follows:

i. Compute the share secret sk48

ii. KAB = KDF(skP)

iii. np? =DEC(CE,)

iv. np®=(d8v8 rcm?, memo)
v. gE = DiersifyHash(d®)

vi. pkE =ivkBx g5

vii. n=(dB pks, vB rcm?)

_ B A
= pr€pk -

viii. Let cm® = NoteCommit> ™", "8(g5B||pk53||vE).

ix. Compute ofk = BLAKE2b — 256("ansh_Derive_ock"||cv||cmB||e£k)
x. Compute op = DEC,(C°"Y).

6 Orchard Shielded Transection

The Orchard protocol was deployed as part of the Zcash Network Upgrade 5 (NUS), which
was activated on the mainnet at block height 1,687,104 on May 31, 2022. The NUS5 upgrade
includes several enhancements, notably the introduction of the Orchard shielded protocol. This
new protocol simplifies and enhances the privacy features of Zcash by improving the efficiency
and security of shielded transactions. A detailed explanation of the Orchard protocol is
provided in the following subsections.

6.1. Abstraction

Before discussing the key components of Orchard, we will first define some terms and
abstractions that are later used in the Orchard protocol.

6.1.1 Pallas and Vesta

Pallas and Vesta are the elliptic curves used in the Orchard. Vesta is used in the Orchard for
the proof system, while Pallas is used in the application circuit. Both curves are designed to be
efficiently implemented in ZK-SNARK circuits; however, Pallas is the curve used for the ZK-
SNARK application in the Orchard.

In this document, we use the notation IP for the group of points (x, y) that satisfy the equation
of the Pallas curve y? = x3 + 5 mod qp alonge with the zero element Op. Similarly, the
notation V is used for set of points that satisfies the Vesta curve equation y2 = x3 + 5 mod qy,
where qp = 225* 4+ 45560315531419706090280762371685220353 and qy = 225 +
45560315531506369815346746415080538113 are the prime numbers. The order of P is
qp and the order of V is gp.

6.1.2 Extract Function (Extractyp)

The Extract function is a mapping from the curve P to the field Z,,, denoted by Extractp,

ap>
defined as follows;

Extractp: PUL- Zg,

x if Q=(xY)
Extract,(Q) ={L if Q=1
0 if Q=0p
6.1.3 Hash to Field
Hash to Field is a function defined as hashy, freld” B"™ x B™ — IF'(ZJ ¢» Where B™ denote the
sequence of bytes of orbitrary length. The function for the input hashy, field (msg,DST) =
(ug,uq) is defined as follows;

e Let DST' = DST||length(DST).

e Letmsg’ = 0x00'28|| msg || [0,128] || [0] || DST’

e Lethy = BLAKE2b — 512([0x00]®, msg")

o Letb, = BLAKE2b — 512([0x00], by||[1]1|DST")

o Let b, = BLAKE2b — 512([0x00]*°, byb,|I[2]||DST")
e Return uy = by mod q; and u; = b, mod q;.

6.1.4 Group Hash

The Group Hash is a function defined as GroupHash®:B" x B™ — G. The input to
GroupHashC® consists of a pair: the first element of the pair is the domain separator, which
distinguishes the usage of the function for different purposes, and the second element is the
message. Let (D, M) be the input pair the GroupHash® can be calculated as follows;

i. Let DST = D||” — “||Curve name||_XMD:BLACK_SSWU_RO_.
ii. Let(ug,uy) = hasheo .y, (M, DST).
iii. Let Qy = map_to_curve_simple_swu(u)
iv. Let Q; = map_to_curve_simple_swu(u,)

Return is0;,4,,(Qo + Q1)

6.1.5 Sinsemilla Hash Function
The Sinsemilla Hash Function is a collision-resistant hash function based on the discrete

logarithm problem over elliptic curves. This hash function is specifically designed for Zcash
Orchard, optimizing the use of lookups available in recent proof systems. The Sinsemilla Hash
function can be denoted by SinsemillaHashToPoint: B" X B™ — P U {1} defined as follows;

i. Computen = ceiling (“22)

ii. Letr=(nxk)—length(M)

iii. Concatenate 0" with the message M, i.e., M' = M||0"

iv. Dived the message M’ into n sub blocks of sizek, i.e., m;, m,, ..., m,.
v. LetQ(D) = GroupHash®("z.cash: SinsemillaQ", D)

vi. LetS(m) = GroupHash®("z.cash: SinsemillaS", m)

vii. Define a binary operation

(x'Y)'i‘(x"y') lf (x'y)io[Pi(x,'y,)
and

(x,y) #L# (x',y")
1 otherwise

(x,y) % (x,y) =

viii. Let Acc = Q(D).
ix. Fori form 1 upto n:
Acc = (Acc % S(m;)) % Acc

Return Acc.

6.1.6 Sinsemilla Commitments
The Sinsemilla commitment is a commitment function that is based on Sinsemilla hash

function, with additional randomized point on the Pallas curve. Mathematically the
commitment can be written as;

M’ + 7 - GroupHash®*(D||"-r","") if M' #1

SinsemillaCommit,.(D, M) = { .
1 otherwise

In the above equation, M’ = SinsemillaHashToPoint(D||"-M", M). The Commit function
1s defined as follows;

Commiti’i"’fk (x,y) = Extractp (S insemillaCommit, ("z.cash:Orchard-CommitIvk", x|| y)).

6.1.7 Orchard Note Commitment
When a note is created through a transaction, only a commitment to its content is publicly

disclosed in the transaction's Action description. This commitment is added to the note
commitment tree when the transaction is recorded on the block chain. This ensures that the
value and recipient remain private, while the ZK-SNARK proof verifies the note’s existence
on the block chain when it is spent. In the Orchard to create a note Sinsemilla Commitment has
been used, the detail is given as follows;

NoteCommitlchard(x, y) = SinsemillaCommit, ("z.cash:0rchard-NoteComit", x||y)

6.1.8 Derive Internal FVK
The function to derive internal FVK is denoted by DerivelnternalFVKOrehard defined as
follows;

i. Let K = 1y, represented in little-endian order.

ii. = Black2b — 512("Zcash_Expend",K,0x83||a,||ny) mod rp

1ii. Return (ak,nk, T

6.1.9 Diversify Hash
Let GroupHash® be as defined in 6.1.5, which is a function that map a string of bytes into the
point of Pallas and Vesta Elliptic curve Point. Using the group hash the diversify hash can be

calculated as follows;
DiversifyHash0ehard(q) = {GroupHashP("Z.cash:Orchard-gd", " ifP=0p
P otherwise

Where P = GroupHash® ("z.cash:Orchard-gd", d).

6.1.10 reprg Function
Let G be an Elliptic, then the reprg is function from G to the set of bytes of length [, defined
as follows;

r.
Wkinternal

YKinternal”

reprg(0g) =0

x mod qg + 22°° if y = 1mod 2

reprg((x,y)) = {x mod qg if y=0mod 2

6.2 Orchard Key Component.
A new Orchard spending key can be generated by choosing a random sequence sk . From the
spending key sk , generate the following keys, generate the spend authorization key agy,
nullifier deriving key n; and the key for commitment randomness given as follows

as; = Black2b — 512("Zcash_Expend"||sk||6) mod 7p

ny, = Black2b — 512("Zcash_Expend",||sk[|7) mod qp

Tk = Black2b — 512("ansh_Expend",| |sk| |8) mod 1p
From the spend authorization, compute the public key that validates the spend authorization,
called the "validate spend authorization key" a}, defined as follows

aE’ = ag - Gorchard
a, = Extractp(ag, - GOThard)
From the n;, and a; compute the incoming viewing key i, using the Commit function defined
as follows;
Ik = Commiti‘i’fk(ak,nk)

Let K = r;,;, represented in little-endian order and suppose

R = Black2b — 512("ansh_Expend",||K||0x82||ak||nk).

(@rnies Tivkyy,,nq,) = DerivelnternalFVKO™hard (g, ny 7y
Let dj, be the first 32 bytes of R and o0, be reaming 32 bytes of R and K;,terna
represented in little-endian order.

Rinternai = Black2b — 512("ansh_Expend",|IKl-nternall|0x82||ak||nk).

Let dy,, ... be the first 32 bytes of Ripternai and 0y, be reaming 32 bytes of Rinternai-
Afterward create a new diversified payment address from the given incoming viewing
key (dg, iyx). To do this first choose a diversifier index uniformly and calculate the diversifier

d and the diversified transmission key pk,, the procedure is given as follows;
d = FF1 — AES256,4, (*", Index)
gY = DiversifyHash(d)
pkq = iy - 9a
FF1-AES256 is a format-preserving encryption algorithm that uses AES-256. It provides a
secure pseudo-random permutation for a fixed empty string “” as a tweak. The relationship
between the key components of the Orchard is depicted in Fig 4.

- rininternal

Orchard
Shielded payment address
AL
r D

Diversifier ‘ d —)pkd Transmission key

1]

Incoming ak nk ka Outgoing

viewing key | \ T / | viewing key
ak nk

rivk

Full viewing
key

L
sk |

Spending key

Figure 4 Orchard Key Components
6.3 Note
The orchard note is the set (d, pky, v, p, Y, rem), where d is the diversifier, pk, is diversifier
public key address, v is the value of the coin, p and i is the value to compute the nullifier and

rcm is the random commitment trapdoor.

6.4 Spending a Valid Coin (Orchard)
Let A be user with orchard shielded payment address

P
(d*, pkya, Ak, 18, Of, ipp ARt G, Sies o) Wishes to send his valid coin n? =

(d4, pkls,v4, pA,4, ™) to a user B with orchard shielded payment addresses(d?, pks).
Initially, the sender A construct a transaction with one or more Action descriptions. For each
description the sender A chose a value v? and the distention payment address (d?, pkiipg) and

perform the following steps.

1. Calculate that pk(H;Bis a type of orchard public key.
ii. Calculate g = DiversifyHashorehard(dPb),

iii. Let p? = nf4, where nf4, the nullifier of the input note.
iv. Derive eg, = Black2b — 512("Zcash_Expend"||rseed||4||p) mod 1p.

If eg, = 0, repeat the above steps.

v. Compute rcm? = Black2b — 512("Zcash_Expend"||rseed||5]||p?) mod 7.
vi. Compute Y2 = Black2b — 512("Zcash_Expend"||rseed||9]|p?) mod 7.

Let cv™t be the commitment note the input note v minus v? of the input note for this action
transfer using the r;,,.

vii. LetcmZ = Extractp (NoteCommitrOCT,ﬁham(ggB, vB,pB,lpB)).

viii. Letn® = (0x02,d?, vE, rseed, memo)

In the above memo is 512 byte optional part of the transection that allow user to attached
arbitrary part of the transection. The sender then encrypt the note n® to the recipient diversified
transmission key pkf:B with diversified base g%, and to the outgoing viewing key o, resulting
the transmitted note ciphertext (egk, Cenc, o). The procedure is given in the following
subsection.

6.4.1 Encryption

In Orchard, the note n®should be sent to user B securely, so that the user can later spend it.
Therefore, user A encrypts the data n®using symmetric key encryption scheme. The symmetric
algorithm AEAD CHACHA20 POLY 1305 is used in both the Sapling and Orchard protocols
for encryption and decryption. Since we know that for symmetric key algorithms, the same key
is used for both encryption and decryption, so, there must be a secure channel for sharing the
secret key that will be used for both operations. To achieve this, both the Sapling and Orchard
protocols use the Diffie-Hellman key exchange protocol to securely share the secret key. The
complete details of the key exchange protocol and the encryption procedure are provided as
follows:

P

48> Where pkg)g is the point of ctEdward

i. Compute the shared secret skl = ey, - pk
curve.
1i. The user A compute ephemeral public key egk =ey " ggg
iii. Derive a symmetric key K p = BLAKE2b — 256(“Zcash_OrchardKDF”, skEBHelfk).

iv. Next encrypt the data C*"¢ = ENCy,,(n?)
If Oypk =1
Choose a random o, and op from the set of bytes.

vi. Letcv = reprg(cv).

vii. cm* = Extractg(cm).

viii. Let o, = BLAKE2b — 256(“ansh_0rchardock", ovk||cv||cm*||e;lfk).
ix. Letop= (pkgBHesk).
x. LetC® =ENC,_ (op).

6.4.2 Decryption using incoming Viewing Key
Let (egk, Ce"¢, COU) be the transmitted ciphertext from the output description. The recipient B must

decrypt €™ using the ephemeral key. However, only the holder of 0, can decrypt the ciphertext C°%¢,

The step-by-step decryption procedure is as follows:

i. Compute the share secret skjp = ify, * €py.
ii. Derive symmetric key K45 = BLAKE2b — 256(“Zcash_OrchardKDF”, skjp|lepy).
iii. Decrypt the note ciphertext n® = DEC,,,(C®"°).
iv. Extractn® = (0x02, d?, v, rseed, memo).
v. Compute gis = DiersifyHash(d?)
vi. Derive the public key pkgg =i5 - ggg.
vii. Letp? =nf4
viii. Compute Y& = Black2b — 512("Zcash_Expend"||rseed||9||p?) mod 1p.
vii. Compute rcm® = Black2b — 512("Zcash_Expend"||rseed||5||p?) mod 1p.
ix. The note that receives B consist of n? = (pk5, d®, v8, 8, rem?B).

The oy, can only decrypt the ciphertext C°%. To decrypt the ciphertext C°%¢, the user have
perform the following steps.

1. Leto. = BLAKE2b — 256("ansh_0rchardock", ovk||cv||cm*||e§k).
ii. Compute op = DEC,, (C°%).

6.5 Action Description.

Orchard introduces the notion of Action transfer, each of which can optionally perform an input
optionally perform an output. An Action description consist of data (cv”et, rt8,n f 4 rk4,
SpenAuthSig4,cm®, epk4,CE,., CE,., enableSpend, enableOutput,w) included in a
transaction that describes the action transfer. The detail of the data are provided as follows;

i. cv™®: is the value commitment to the spent note minus output note.

1. rt4: denote the anchor for the output treestate of the previous block.

iii. nf4:is the nullifier for the input note n.

iv. rk4:is validation key for the SpendAuthSig*.

v. SpendAuthSig?: is the spend authorization signature.

vi. cm?®: is the note commitment to the output note.

vil. ey is the ephemeral key that is used shared a secret for encryption.
viii. C°™¢: is the ciphertext component for the encrypted output note.

ix. C°%: is the ciphertext component that allow the holder of the outgoing cipher key to
recover the recipient diversified transmission key pkg)g and the ephemeral private
key egy.

x. The enableSpend is the flag that is set in order to enable the non-zero valued spends
in this action.

xi. enableOutput: is the flag that is set to enable non-zero valued outputs in this action.

xii. m: is the zero-knowledge proof with primary input (cv™t nf4,rk4, cms,
enableSpends, enableOutputs) for the action statement.

We have already discussed the encryption and decryption procedures for encrypting the note's
plaintext and ciphertext. In the following subsections, the Zero-Knowledge Proof and Binding
Signature are discussed in more detail.

5.3.2.1 Action Statement 7t/
The spend statement 4 assure that for a given primary input (rt4, cv™et, nf4,rk4, cm4,

enableSpend, enableOutput) the prover know the auxiliary inputs
(Path, Position, gEA, pkgg, v, p4, YA, rem4, cm?, ad, ny, rivk4, ggg, pkgg, vE, YB, rem?B)

such that the following conditions hold;

i. Note Commitment integrity: cm# = Extractp (NoteC ommitZnehard(gk,, UA,pA,l/)A)).

ii. The path and position (path, position) of cm# in the Markle tree is valid.

iii. Value commitment integrity: cv™ = ValueCommitZLherd(v4 — vB).

iv. Nullifier: nf4 = Extractp(PoseidonHash(nk,, p#) + ¥4 mod qp + cm4)
v. Randomized public key: rEA = (a? + aZ)P.
vi. Diversified address: pkgA = A gg)A.

A
vii. Incoming viewing key if, = Commltr’j(‘ (af,nd).
ivk

viii. New note commitment cm4 = NoteCommitZ/chard (ggs ||pk53 vE ||pB||yB),
ix. Enable spend flag v = 0 or enableSpends = 1.
x. Enable Output flag v® = 0 or enableOutputs = 1.

6.5.1 Balance and Binding Signature
The net value of orchard spend minus output in a transaction is called the orchard balancing

value denoted by pPalanceorchard e consistency of pPatanceorchard with valye commitment
in Action description is enforced by the Orchard binding signature. The role of this signature
in the Orchard pool is to prove that the net value spend by Action transfer is consistent with
the pbalanceOrchard fie]d of the transaction. For the binding signature the notion of
Homomorphic Pedersen commitment is introduced. Let V7" g P* and R°7"a7@ € P* be
the base elements. Let HH be the binary operation addition of private keys defined as:

EH: Sign. Privat X Sign. Privat — Sign. Privat

Suppose H be the additive inverse operation defined on the set of private key i.e., sk HH
(H sk) = Og. Let @ be the binary operation addition defined on the set of public key:

@: Sign. Public X Sign. Public — Sign. Public

Let © be additive inverse binary operation defined on the set of public key i.e., pk @
(©pk) = Og. Now that a transaction has n Action description with value commitment

cvlet, ..., cvl*et committing to a value vI*¢, ..., vt with randomness rcvé, ..., rcvt. The
orchard balancing value pPatanceorchard — s et ¢ the validator cannot check it directly

because the value are hidden by the commitment, therefore validator calculate the transection
binding validating key:

bg}:chard — (@?:1 Cvinet) e Valuecommitgrchard (vbalanceorchard)

In the above equation ValueCommit3™"*"? is a function defined as

Valuecommitgrchard (vbalanceorchard) — [{l=1 vinet] . Vorchard

Cvinet — [?:1 vinet] . Vorchard @ [Hﬂ?:l T'CUl?wt] . Rorchard

Implies

bg}:chard — [?=1 vinet] . Vorchard @ [EE?:l chl-net] . Rorchard e [ln=1 vlnet] . Vorchard

orchard _ n net orchard
byk = [Hiz, revi™] - R
Since the signer knowrcv*®t, rcv?t, ..., rcvt, so they can calculate the correspondin
1 2 n s P g
signing key
orchard _n net
bgy =i=1 TCV;

In order to check the implementation the signer should check that either the public key b3, ¢"e@

orchard
bsk

is equal to creating the public key from the private key mathematically defined as

bO,CChard — bo}:chard . Rorchard
v s

Let SigHash be a transaction hash containing action description using SIGHASH
type SIGHASH_ALL. So the validator check the balance by validating

BindingSigorCh‘”d.Validatebokrchard (SigHash, bindingSigOrchard) = 1.

Thus checking the orchard binding signature ensure that the action transfer in the transection
balance without their individual net value being revealed.

6.5.2 Spending Authorization Signature

In Orchard the concept of SpendAuthSig has been used in order to prove the knowledge of the
spending key authorizing spending of an input note. In this document the notation
SpendAuthSigP®rehard js ysed for spend authorization signature scheme. The knowledge of
spending could have been proven directly in the action statement, however the reason behind
a separate signature is to allow devises that a limited to resources such as Hardware wallet
authorize the shielded spend, as these devices cannot create and may not be verified zk-SNARK
proof for a statement of the size needed using the Hola 2 proving system. The validating key
of the signature must be revealed in the Action description so that the signature can be checked
by the validator. To ensure that the validating key cannot be linked with the spending key ag
from which the note was spent, in zcash a signature scheme has been used with re-randomizable
keys. In the Action statement prove that this validating key is a re-randomization of the spend
authorization key a; with a randomizer known to the signer. The spend authorization signature
is over the SIGHASH transaction has, so that it cannot be replied in other transection.

Let SigHash be the SIGHASH transaction hash using the SIGHASH type SIGHASH_ALL. Let
af, be the spend authorization key. The detail is given as follows;

1. For each action description the signer choose a fresh randomizer .
ii. Compute rg, = @ + agy.

ii.
1v.

V.

Letrk = a - Ga} + a}.

Generate a proof m of the action statement with « in the auxiliary input and 73, in the
primary input.

Let SpendAuthSig = Sig,, (SigHash)

The resulting SpendAuthSig and the proof 7 are included in the Action description.

7 Cryptographic primitive

In the previous sections, we discussed a generalized overview of various shielded payment

protocols. We have seen the cryptographic primitive such as random number generators, hash

functions, signature algorithms, zero-knowledge proof algorithms, and encryption algorithms

are used. In this section, we provide a detailed explanation of these algorithms

1l

iii.

1v.

V1.

The pseudo rando function PRF (X) is the SHA256(1110||k;s2-pie| |X256-pic)-

The note commitment function COMM,.(X) = SHA256(X]||r).

The Diversify is a function that diversify an element into the base element of the

Elliptic Curve.

The Key Derivation Function (KDF) is used to securely share a secret key. In Zcash,

for all shielded payment schemes, i.e., Sprout, Sapling, and Orchard, the Diffie-

Hellman key exchange protocol is used over the elliptic curve.

We have seen that for secure node parameter transmission, a symmetric encryption

scheme is used. The symmetric encryption scheme is

AEAD _CHACHA20 POLY1305, which is an authenticated encryption scheme with

associated data. In Zcash, the algorithm is used with empty associated data and an all-

Zero nonce.

For signing a transaction, Zcash uses multiple signature algorithms: one for transparent

transactions and three for shielded payment schemes (Sprout, Sapling, and Orchard).

e The transparent input signatures use ECDSA over the secp256kl curve, as in
Bitcoin.

e For Sprout, the signing procedure is called JoinSplitSig, which is used to sign
transactions that contain at least one JoinSplit description. The signature algorithm
used for JoinSplitSig is Ed25519.

e In Sapling, the signature algorithms used are SpendAuthSig, for signing the
authorization of spend transfers, and BindingSig, for enforcing the balance between

spend and output transfers. The signature algorithm used for both SpendAuthSig

and BindingSig is RedDSA over the JubJub curve. The parameters for RedDSA

over the JubJub curve are as follows:

p 52435875175126190479447740508185965837690552500527637822603658699938581184513
a = 52435875175126190479447740508185965837690552500527637822603658699938581184512
d = 19257038036680949359750312669786877991949435402254120286184196891950884077233

x = 8076246640662884909881801758704306714034609987455869804520522091855516602923
y = 13262374693698910701929044844600465831413122818447359594527400194675274060458

q = 6554484396890773809930967563523245729705921265872317281365359162392183254199

Where p is the prime number, the integers a and d are the parameter the

equation of the following ctEdward curve
ax? +y? =1+ dx?y?

e The generator G generate a subgroup of order g.

e In orchard binding signature is used to enforce balance of action transfer and
prevent their reply. The signing algorithm used for the signature is the RedDSA
over the pallas curve.

The group generated by the pallas curve is the set of points that satisfied the equation

of short Weierstrass equation given as follows;

y2=x3+ax+bmodp
p = 28948022309329048855892746252171976963363056481941560715954676764349967630337,
a=0
b=5
G = (28948022309329048855892746252171976963363056481941560715954676764349967630336,
28948022309329048855892746252171976963363056481941647379679742748393362948097)

vil. In the shielded payment scheme, zero-knowledge proofs are used for all three payment
schemes, i.e., Sprout, Sapling, and Orchard. For each payment scheme, Zcash uses a
specific proving system; therefore, there are a total of three proving systems in Zcash.

e In the Sprout shielded payment scheme, zk-SNARKSs are generated by a fork of
libsnark using the BCTV14 proving system and BN-254 pairing to prove and
verify Sprout JoinSplit statements.

e For Sapling, the Groth16 proving system is used with BLS12-381 pairing to prove
and verify Sapling spend and output statements.

e For Orchard, the Halo 2 proving system is used with the Vesta curve to prove and

verify Orchard action statements.

