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1 Introduction  
The aim of this document is to provide an in-depth overview of the Zcash protocol, detailing 

both the protocol itself and the underlying cryptographic primitives. Zcash supports two types 

of payment schemes: the transparent payment scheme and the shielded payment scheme. The 

difference between these two payment schemes, is that in the transparent payment scheme, all 

user information’s, such as transaction volume and user addresses are publicly accessible. In 

contrast, the shielded payment scheme conceals this information, making it unavailable to the 

public.  

Zcash offers users the flexibility to choose between privacy and transparency, with two types 

of addresses: shielded addresses and transparent addresses. Shielded addresses are used for 

shielded payments, while transparent addresses are used for payments where user information 

is public. In addition, there is flexibility in transactions between shielded and transparent 

addresses. Transactions from shielded addresses to transparent addresses and vice versa are 

supported. The transection details remain private from the shielded addresses to transparent 

addresses, while the transaction details are revealed when transferring from transparent to 

shielded addresses. The complete detail is illustrated in Figure 1. 

 

 
Figure 1 Sending Between Shielded and Transparent Addresses 



 
 

In the following sections of this document, we discuss both the payment schemes, how these 
payment schemes work, and the cryptographic primitives used within them, especially the 
shielded payment scheme. Section 2 provides a brief overview of the transparent payment 
scheme. The first ZeroCash protocol for the shielded payment scheme is described in Section 
3. Section 4 covers the Sprout shielded payment scheme. The Sapling update is discussed in 
Section 5. Section 6 is devoted to the Orchard update of the Zcash shielded payment scheme. 

2 Transparent Transection. 
Transparent payment scheme uses transparent addresses for the transparent transaction. So, in 
this payment scheme after the transection the address and the associated value are publicly 
recorded on the Zcash block chain just like bitcoin. The addresses of transparent payment start 
with the letter 𝑡, and it does not use Zero Knowledge proof (ZKP) to protect transection data 
for value sent or received it. However, for authentication the transparent input signatures use 
ECDSA over the secp256k1 curve, as in Bitcoin.        

3 ZeroCash  
There are two types of shielded transactions, named mint and pour. The mint transaction is 
used to mint a new coin, denoted by𝑡 𝑥𝑚𝑖𝑛𝑡. The pour transaction is used to transfer a coin from 
one user to another, denoted by 𝑡𝑥𝑝𝑜𝑢𝑟. In the Shielded Payment system, each user has shielded 
addresses(𝑎𝑑𝑑𝑟𝑝𝑘, 𝑎𝑑𝑑𝑟𝑠𝑘), called public and private addresses, and some public 
(𝑝𝑘𝑠𝑖𝑔, 𝑣𝑘𝑝𝑜𝑢𝑟) and private (𝑠𝑘𝑠𝑖𝑔, 𝑝𝑘𝑝𝑜𝑢𝑟) parameters. The public address consists of the 
tuple 𝑎𝑑𝑑𝑟𝑝𝑘 = (𝑎𝑝𝑘, 𝑝𝑘𝑒𝑛𝑐), where 𝑝𝑘𝑒𝑛𝑐 is the encryption key for an asymmetric encryption 
scheme and the 𝑎𝑝𝑘 is a user address used to receive coins. The private address consists of the 
tuple 𝑎𝑑𝑑𝑟𝑠𝑘 = (𝑎𝑠𝑘, 𝑠𝑘𝑑𝑒𝑐), where 𝑠𝑘𝑑𝑒𝑐 is the secret decryption key for an asymmetric 
encryption scheme. 𝑎𝑠𝑘  is a spending key; without knowledge of it, no one can spend the coins. 
The public parameters consist of a signature verification public key 𝑝𝑘𝑠𝑖𝑔 that can be used to 
verify signatures used in the protocol and a zero-knowledge verification key 𝑘𝑝𝑜𝑢𝑟. Similarly, 
the private parameters consist of a signature private key 𝑠𝑘𝑠𝑖𝑔 and a zero-knowledge private 
key 𝑘𝑝𝑜𝑢𝑟, used in the proof of the ZKP. Additionally, Zcash uses three pseudorandom 
functions, i.e., 𝑃𝑅𝐹𝑥

𝑎𝑑𝑑𝑟, 𝑃𝑅𝐹𝑥
𝑠𝑛 and 𝑃𝑅𝐹𝑥

𝑝𝑘 with input seed 𝑥, where 𝑃𝑅𝐹𝑥
𝑠𝑛 is a collision-

resistant function. In the following subsection, we discuss the algorithms for generating 
addresses, mint transactions, pour transactions, the verification algorithm, and the receiving 
algorithm in detail. 

 Generate Address  
For a security perimeter 𝜆 generate public and private (𝑝𝑘𝑒𝑛𝑐, 𝑠𝑘𝑑𝑒𝑐) ⟵ 𝐺𝑒𝑛(1𝜆). Next 
generate a random number 𝑎𝑠𝑘 and compute 𝑎𝑝𝑘 i.e., 𝑎𝑝𝑘 = 𝑃𝑅𝐹𝑎𝑠𝑘

𝑎𝑑𝑑𝑟(0). The public address 
𝑎𝑑𝑑𝑟𝑝𝑘 = (𝑎𝑝𝑘, 𝑝𝑘𝑒𝑛𝑐) and the private 𝑎𝑑𝑑𝑟𝑠𝑘 = (𝑎𝑠𝑘, 𝑠𝑘𝑑𝑒𝑐). The output of address generate 
algorithm is (𝑎𝑑𝑑𝑟𝑝𝑘, 𝑎𝑑𝑑𝑟𝑠𝑘).   

 Mint  
To mint a coin with the desired value  𝑣 ∈  { 0,1, … , 𝑣𝑚𝑎𝑥 }, the user 𝑈 with public address 𝑎𝑝𝑘 
initially generates three random number sequences  𝜌, 𝑟, and 𝑠. Then, compute 𝑘 =
 𝐶𝑂𝑀𝑟(𝑎𝑝𝑘 || 𝜌) and 𝑐𝑚 =  𝐶𝑂𝑀𝑠(𝑣|| 𝑘). The coin is 𝑐 =  (𝑎𝑝𝑘, 𝑣, 𝜌, 𝑟, 𝑠, 𝑐𝑚) and the 



 
 

transaction 𝑡𝑥𝑚𝑖𝑛𝑡  = (𝑐𝑚 𝑣, 𝑘, 𝑠). The transaction 𝑡𝑥𝑚𝑖𝑛𝑡 is accepted to the ledger when the 
correct amount is deposited.  

 Mint Transection Verification 
To verify the mint transection 𝑡𝑥𝑚𝑖𝑛𝑡 = (𝑐𝑚, 𝑣, 𝑘, 𝑠), compute 𝑐𝑚′ = 𝐶𝑂𝑀𝑠(𝑣||𝑘) and out 
𝑏 = 1 if 𝑐𝑚′ == 𝑐𝑚 else 𝑏 = 0.  It mean the transection 𝑡𝑥𝑚𝑖𝑛𝑡 is valid if 𝑏 = 1, otherwise 
the transaction is not valid.   

 Pour Transection 
The pour transaction is used to spend a valid coin by transferring it to another user. The pour 
operation consumes the input coin along with the secret address 𝑎𝑠𝑘 and public parameter of 
the user who spends the coin, and the public address 𝑎𝑝𝑘 and public parameter of the users who 
receive the coin. 

Step 1. Suppose a user A with the address key pair (𝑎𝑑𝑑𝑟𝑝𝑘
𝐴 , 𝑎𝑑𝑑𝑟𝑠𝑘

𝐴  ) wishes to send his coin 
𝑐𝐴  =  (𝑎𝑝𝑘

𝐴 , 𝑣, 𝜌𝐴, 𝑟𝐴, 𝑠𝐴, 𝑐𝑚𝐴) to the target addresses 𝑎𝑑𝑑𝑟𝑝𝑘
𝐵  and 𝑎𝑑𝑑𝑟𝑝𝑘

𝐶  belonging to users 
𝐵 and 𝐶. Initially, the user 𝐴 produces two new coins 𝑐𝐵  and 𝑐𝐶, with total value  𝑣 =  𝑣𝐵  +
 𝑣𝐶. For new coins user 𝐴 generates a set of random numbers {𝜌𝐵 , 𝜌𝐶, 𝑟𝐵, 𝑟𝐶, 𝑠𝐵, 𝑠𝐶}. Then, it 
computes 𝑘𝐵  =  𝐶𝑂𝑀𝑟𝐵(𝑎𝑝𝑘

𝐵 ||  𝜌𝐵) and 𝑘𝐶  =  𝐶𝑂𝑀𝑟𝐶 (𝑎𝑝𝑘
𝐶 ||𝜌𝐶). Afterwards, user 𝐴 

computes 𝑐𝑚𝐵  =  𝐶𝑂𝑀𝑠𝐵(𝑣𝐵|| 𝑘𝐵 and 𝑐𝑚𝐶 = 𝐶𝑂𝑀𝑠𝐶(𝑣𝐶|| 𝑘𝐶). This yields two new coins 
𝑐𝐵  =  (𝑎𝑝𝑘

𝐵 , 𝑣𝐵, 𝜌𝐵, 𝑟𝐵, 𝑠𝐵, 𝑐𝑚𝐵) and 𝑐𝐶  =  (𝑎𝑝𝑘
𝐶 , 𝑣𝐶, 𝜌𝐶, 𝑟𝐶, 𝑠𝐶, 𝑐𝑚𝐶). 

Step 2. Now, in order to allow users 𝐵 and 𝐶 to spend their coins 𝑐𝐵 and 𝑐𝐶, user 𝐴 needs to 
send the secret values corresponding to the new coins to 𝐵 and 𝐶 securely. For that, in step 
two, user 𝐴 encrypts the secret values: 𝐶𝐵  =  𝐸𝑁𝐶𝑝𝑘𝐵 (𝑣𝐵, 𝜌𝐵, 𝑟𝐵, 𝑠𝐵) and 𝐶𝐶  =
 𝐸𝑁𝐶𝑝𝑘𝐶(𝑣𝐶, 𝜌𝐶, 𝑟𝐶, 𝑠𝐶) using an asymmetric key encryption scheme with the public keys 
𝑝𝑘𝑒𝑛𝑐

𝐵  and 𝑝𝑘𝑒𝑛𝑐
𝐶  of users 𝐵 and 𝐶. 

Step 3.  In step four, user 𝐴 generates a signature key pair (𝑝𝑘𝑠𝑖𝑔, 𝑠𝑘𝑠𝑖𝑔) and computes the 
hash of the public signature key, i.e., ℎ𝑠𝑖𝑔  =  𝐻(𝑝𝑘𝑠𝑖𝑔), and then generates a random sequence 
using ℎ =  𝑃𝑅𝐹𝑎𝑠𝑘

𝑝𝑘(ℎ𝑠𝑖𝑔). 

Step 4. In step 4, user A generates proof and verification keys ( 𝑝𝑘𝑝𝑜𝑢𝑟, 𝑣𝑘𝑝𝑜𝑢𝑟) to produce a 
ZKP proof 𝜋𝐴 for the following NP statement. 

Statement: The instance is in the form 𝑥 = (𝑟𝑡, 𝑠𝑛𝐴, 𝑐𝑚𝐵, 𝑐𝑚𝐶, 𝑣𝐴, ℎ𝑠𝑖𝑔, ℎ). The instance 𝑥 
consists of the Merkle tree root 𝑟𝑡, serial number 𝑠𝑛𝐴, coin commitments 𝑐𝑚𝐵 and 𝑐𝑚𝐶, the 
value of the coin 𝑣𝐴,ℎ𝑠𝑖𝑔 and ℎ. 

Witness: The witness is in the form 𝑎 = (𝑝𝑎𝑡ℎ, 𝑐𝐴, 𝑎𝑠𝑘
𝐴 , 𝑐𝐵, 𝑐𝐶). It consists of the 

authentication path, the information about the old and new coins, and the address secret key. 

The user 𝐴 generates a 𝜋𝐴  = 𝑍𝐾𝑃𝑝𝑟𝑜𝑜𝑓(𝑝𝑘𝑝𝑜𝑢𝑟, 𝑥, 𝑎). The proof 𝑍𝐾𝑃𝑣𝑒𝑟𝑖𝑓𝑦(𝑝𝑘𝑝𝑜𝑢𝑟, 𝜋𝐴) is 
valid if the following conditions are met. 

i. The coin commitment 𝑐𝑚𝐴 of  𝑐𝐴 appears in the ledger and the path is a valid 
authentication path for the leaf 𝑐𝑚𝐴  with respect to the root 𝑟𝑡. 

ii. The address secret key matches the address public key, i.e., 𝑎𝑝𝑘
𝐴  =  𝑃𝑅𝐹𝑎𝑠𝑘

𝐴  
𝑎𝑑𝑑𝑟(0). 



 
 

iii. The serial number 𝑠𝑛𝐴 of  𝑐𝐴 is computed correctly, i.e., 𝑠𝑛𝐴  =  𝑃𝑅𝐹𝑎𝑠𝑘
𝐴

𝑠𝑛 (𝜌𝐴). 

iv. For 𝑐𝐴, it holds that 𝑘𝐴  = 𝐶𝑂𝑀𝑟
𝐴(𝑎𝑝𝑘

𝐴 ||𝜌𝐴) and 𝑐𝑚𝐴  =  𝐶𝑂𝑀𝑠𝐴(𝑣𝐴||𝑘𝐴). Similarly, 
for 𝑐𝐵, it holds that 𝑘𝐵 = 𝐶𝑂𝑀𝑟𝐵(𝑎𝑝𝑘𝐵||𝜌𝐵 ) and 𝑐𝑚𝐵  =  𝐶𝑂𝑀𝑠𝐵(𝑣𝐵||𝑘𝐵) and for 𝑐𝐶, 
it holds that 𝑘𝐶  =  𝐶𝑂𝑀𝑟𝐶(𝑎𝑝𝑘𝐶||𝜌𝐶 ) and 𝑐𝑚𝐶  =  𝐶𝑂𝑀𝑠𝐶(𝑣𝐶||𝑘𝐶 ). 

v. The random sequence ℎ is generated using the address secret key 𝑎𝑠𝑘
𝐴  and ℎ𝑠𝑖𝑔, i.e., 

ℎ =  𝑃𝑅𝐹
𝑎𝑆𝑘

𝐴
𝑝𝑘 (ℎ𝑠𝑖𝑔). 

vi. Balance is preserved, i.e., 𝑣𝐴   =  𝑣𝐵  +  𝑣𝐶 . 

Step 6: Next, user 𝐴 signs a set 𝑚 = {𝑥, 𝜋𝐴, 𝐶𝐴, 𝐶𝐵} using the secret signing key, i.e., 𝜎 =
 𝑆𝑖𝑔(𝑠𝑘𝑠𝑖𝑔, 𝑚). 

Step 7: In this step, the user sets a transaction pour 𝑡𝑥𝑝𝑜𝑢𝑟 =
(𝑟𝑡, 𝑠𝑛𝐴, 𝑐𝑚𝐵, 𝑐𝑚𝐶, 𝑣𝐴, 𝑝𝑘𝑠𝑖𝑔, ℎ, 𝜋𝐴, 𝐶𝐴, 𝐶𝐵 𝜎). 

As a result, the pour transaction 𝑡𝑥𝑝𝑜𝑢𝑟 = (𝑟𝑡, 𝑠𝑛𝐴, 𝑐𝑚𝐵, 𝑐𝑚𝐶, 𝜋𝐴) is appended to the ledger. 
Since 𝐴 does not know the pair of secret addresses 𝑎𝑠𝑘𝐵 and 𝑎𝑠𝑘𝐶 corresponding to the public 
addresses 𝑎𝑝𝑘𝐵  and 𝑎𝑝𝑘𝐶, Therefore,  𝐴 cannot spend the coins 𝑐𝐵 and 𝑐𝐶 as 𝐴 cannot provide 
𝑎𝑠𝑘𝐵  and 𝑎𝑠𝑘𝐶 as part of the witness for subsequent pour operations. In addition, to prevent 
double spending, if 𝑠𝑛𝐴 is appears in a ledger then reject the transection else 𝑠𝑛𝐴 add to the 
list.  

 Pour Transection Verification 
To verify the pour transaction 𝑡𝑥𝑝𝑜𝑢𝑟 = (𝑟𝑡, 𝑠𝑛𝐴, 𝑐𝑚𝐵, 𝑐𝑚𝐶, 𝑣𝐴, 𝑝𝑘𝑠𝑖𝑔, ℎ, 𝜋𝐴, 𝐶𝐴, 𝐶𝐵, 𝜎 ), check 
whether 𝑠𝑛𝐴 appears in the ledger 𝐿. If it does, output 𝑏 =  0; otherwise, output b = 1. This 
step prevents double spending. Next, check the Merkle root 𝑟𝑡 in the ledger L. If the 𝑟𝑡 does 
not appear in the ledger 𝐿, output 𝑏 =  0; otherwise, output 𝑏 =  1. Next, compute ℎ𝑠𝑖𝑔 =
𝐻(𝑝𝑘𝑠𝑖𝑔) and set 𝑥 = (𝑟𝑡, 𝑠𝑛𝐴, 𝑐𝑚𝐵, 𝑐𝑚𝐶, 𝑣𝐴, ℎ𝑠𝑖𝑔, ℎ). Then set 𝑚 =  (𝑥, 𝜋𝐴, 𝐶𝐴, 𝐶𝐵) and 
verify the signature 𝑉𝑠𝑖𝑔(𝑝𝑘𝑠𝑖𝑔, 𝑚, 𝜎). If the signature 𝜎 is verified, output 𝑏 =  1; otherwise, 
output 𝑏 =  0. In the next step, verify the zero-knowledge proof 𝑉𝑒𝑟𝑖𝑓𝑦(𝑣𝑘𝑝𝑜𝑢𝑟, 𝑥, 𝜋𝐴 ). If 
the verification is true, output 𝑏′ =  1; otherwise, output 𝑏′ =  0. In the last step, if 𝑏 ∧ 𝑏′ =
 1, it means that the transaction 𝑡𝑥𝑝𝑜𝑢𝑟 is verified; otherwise, reject the transaction 𝑡𝑥𝑝𝑜𝑢𝑟. 

 Receive Transection  
In this subsection, the steps to receive the spent coins are discussed in detail. Suppose user 𝐵 
receives the pour transaction 𝑡𝑥𝑝𝑜𝑢𝑟 =  (𝑟𝑡, 𝑠𝑛𝐴, 𝑐𝑚𝐵, 𝑐𝑚𝐶, 𝑣𝐴, 𝑝𝑘𝑠𝑖𝑔, ℎ, 𝜋𝐴, 𝐶𝐵, 𝐶𝐶, 𝜎 ). First, 
decrypt 𝐶𝐵 using their private key: (𝑣𝐵, 𝜌𝐵, 𝑟𝐵, 𝑠𝐵)  =  𝐷𝐸𝐶𝑠𝑘𝐵(𝐶𝐵). Then verify the output of 
the decryption by checking 𝑐𝑚𝐵  =  𝐶𝑂𝑀𝑠𝐵 (𝑣𝐵|| 𝐶𝑂𝑀𝑟𝐵(𝑎𝑝𝑘𝐵|| 𝜌𝐵)). Next, check whether 

𝑠𝑛𝐵 == 𝐶𝑂𝑀𝑟𝐵(𝑎𝑝𝑘𝐵|| 𝜌𝐵) does not appear in the ledger 𝐿. If both conditions are true, 𝑐𝐵  =
 (𝑎𝑑𝑑𝑟𝑝𝑘, 𝑣𝐵, 𝜌𝐵 , 𝑟𝐵, 𝑠𝐵, 𝑐𝑚𝐵) is the new coin for user 𝐵 to spend. 

 

 

 



 
 

  

Setup  
Input: Security Parameters 𝜆. 
Output: Public parameters 𝑝𝑝 and 𝑠𝑝. 
1. Generate (𝑠𝑘, 𝑣𝑘) ← 𝐺𝑒𝑛(1𝜆 ). 
2. Generate (𝑠𝑘𝑠𝑖𝑔, 𝑝𝑘𝑣𝑒𝑟) ← 𝐺𝑒𝑛(1𝜆 ). 
3. Generate (𝑠𝑘𝑑𝑒𝑐, 𝑝𝑘𝑒𝑛𝑐) ← 𝐺𝑒𝑛(1𝜆 ). 
4. Public parameters 𝑝𝑝 = (𝑣𝑘, 𝑝𝑘𝑣𝑒𝑟, 𝑝𝑘𝑑𝑒𝑐). 
5. Secret parameters 𝑠𝑝 = (𝑠𝑘, 𝑠𝑘𝑠𝑖𝑔, 𝑠𝑘𝑑𝑒𝑐). 

 
Create Addresses  

Input: Public parameters 𝒑𝒑 
Output:  Address key pair (𝑎𝑑𝑑𝑟𝑝𝑘, 𝑎𝑑𝑑𝑟𝑠𝑘). 
1. Randomly sample 𝑃𝑅𝐹 seed 𝑎𝑠𝑘 . 
2. Compute 𝑎𝑝𝑘 = 𝑃𝑅𝐹𝑎𝑠𝑘(0). 
3. 𝑎𝑑𝑑𝑟𝑝𝑘 = (𝑎𝑝𝑘, 𝑝𝑘𝑒𝑛𝑐). 
4. 𝑎𝑑𝑑𝑟𝑠𝑘 = (𝑎𝑠𝑘, 𝑠𝑘𝑑𝑒𝑐). 

 
         Mint 
Input: Public parameter 𝑝𝑝,coin value 𝑣 and 𝑎𝑑𝑑𝑟𝑝𝑘  
Output: Coin 𝑐 and mint transection 𝑇𝑥𝑚𝑖𝑛𝑡  
1. Randomly select a 𝑃𝑅𝐹 seed 𝜌. 
2. Random select two trapdoors 𝑟 and 𝑠. 
3. Compute 𝑘 = 𝐶𝑂𝑀𝑀𝑟(𝑎𝑝𝑘||𝜌). 
4. Compute 𝑐𝑚 = 𝐶𝑂𝑀𝑀𝑠(𝑣||𝑘). 
5. Set 𝑐 = (𝑎𝑑𝑑𝑟𝑝𝑘, 𝑣, 𝜌, 𝑟, 𝑠, 𝑐𝑚). 
6. Set 𝑇𝑥𝑚𝑖𝑛𝑡 = (𝑐𝑚, 𝑣, 𝑘, 𝑠) 

 
Verification Transection 

Input: Public Parameters 𝑝𝑝. 
 Transection 𝑇𝑥 
 The current ledger  

Output: 𝑏 = 1 if the transaction 𝑇𝑥 is valid. 
  𝑏 = 0 if the transaction 𝑇𝑥 is not valid. 
a) If given a mint transection 𝑇𝑥𝑚𝑖𝑛𝑡 . 
1. Parse 𝑇𝑥𝑚𝑖𝑛𝑡 = (𝑐𝑚, 𝑣, 𝑘, 𝑠). 
2. Set 𝑐𝑚′ = 𝐶𝑂𝑀𝑀𝑠(𝑣||𝑘). 
3. If 𝑐𝑚′ = 1 Output 𝑏 = 1 else 𝑏 = 0. 
b) If given a Pour Transection 𝑇𝑥𝑝𝑜𝑢𝑟 . 
1. Parse 𝑥𝑝𝑜𝑢𝑟 = (𝑟𝑡, 𝑛𝑓, 𝑐𝑚, 𝑣, 𝑝𝑘𝑠𝑖𝑔, ℎ, 𝜋, 𝐶, 𝜎). 
2. If 𝑛𝑓 appear in the ledger output 𝑏 =  0. 
3. If 𝑟𝑡 does not appear in the ledger output 𝑏 = 0. 
4. Compute ℎ𝑠𝑖𝑔 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑠𝑖𝑔). 
5. Set 𝑥 = (𝑟𝑡, 𝑛𝑓, 𝑐𝑚, 𝑣, ℎ𝑠𝑖𝑔, ℎ, ) 
6. Set 𝑚 = (𝑥, 𝜋, 𝐶). 
7. Compute 𝑉𝑠𝑖𝑔(𝑝𝑘𝑠𝑖𝑔, 𝑚, 𝜎) is not valid output 𝑏 = 0. 
8. Compute 𝑉𝑧𝑘(𝑣𝑘, 𝑥, 𝜋) not valid output 𝑏 = 0. 

     Pour  
Input: Public parameters 𝑝𝑝. 
 Markle root 𝑟𝑡𝐴. 
 User 𝐴 coin 𝑐𝐴. 
 User 𝐴 address secret key 𝑎𝑑𝑑𝑟𝑠𝑘

𝐴 . 
 𝑃𝑎𝑡ℎ𝐴  from commitment 𝑐𝑚𝐴 to root 𝑟𝑡𝐴. 
 New coin value 𝑣𝐵 . 
 User 𝐵 public address 𝑎𝑑𝑑𝑟𝑝𝑘

𝐵 . 
 User 𝐴 coin value 𝑣𝐴. 

Output: New coin 𝑐𝐵  for 𝐵 and transection 𝑇𝑥𝐵 . 
1. Parse 𝑐𝐴 = (𝑎𝑑𝑑𝑟𝑝𝑘

𝐴 , 𝑣𝐴, 𝜌𝐴, 𝑟𝐴, 𝑠𝐴, 𝑐𝑚𝐴). 
2. Parse the secret address 𝑎𝑑𝑑𝑟𝑠𝑘

𝐴 . 
3. Compute nullifier 𝑛𝑓𝐴 = 𝑃𝑅𝐹𝑎𝑠𝑘

𝐴 (𝜌𝐴). 
4. Randomly select a 𝑃𝑅𝐹 seed 𝜌𝐵. 
5. Randomly sample random numbers 𝑟𝐵  and 𝑠𝐵. 
6. Compute 𝑘𝐵 = 𝐶𝑂𝑀𝑀𝑟𝐵(𝑎𝑝𝑘

𝐵 ||𝜌𝐵). 
7. Compute 𝑐𝑚𝐵 = 𝐶𝑂𝑀𝑀𝑠𝐵(𝑣𝐵||𝑘𝐵). 
8. Set 𝑐𝐵 = (𝑎𝑑𝑑𝑟𝑝𝑘

𝐵 , 𝑣𝐵, 𝜌𝐵, 𝑟𝐵, 𝑐𝑚𝐵). 
9. Encrypt 𝐶𝐵 = 𝐸𝑁𝐶𝑝𝑘𝑒𝑛𝑐

𝐵 (𝑣𝐵, 𝜌𝐵, 𝑟𝐵, 𝑠𝐵) 
10. Compute ℎ𝑠𝑖𝑔 = 𝐻𝑎𝑠ℎ(𝑝𝑘𝑠𝑖𝑔

𝐴 ) 
11. Compute ℎ = 𝑃𝑅𝐹𝑎𝑠𝑘

𝐴 (1||ℎ𝑠𝑖𝑔). 
12.  Set 𝑥 = (𝑟𝑡𝐴, 𝑠𝑛𝐴, 𝑐𝑚𝐵, 𝑣𝐴, ℎ𝑠𝑖𝑔, ℎ). 
13. Set 𝑎 = (𝑝𝑎𝑡ℎ𝐴, 𝑐𝐴, 𝑎𝑑𝑑𝑟𝑠𝑘

𝐴 , 𝑐𝐵). 
14. Compute 𝜋𝐴 = 𝑃𝑟𝑜𝑣𝑒(𝑣𝑘𝐴, 𝑥, 𝑎). 
15. Set 𝑚 = (𝑥, 𝜋, 𝐶𝐵). 
16. Compute 𝜎 = 𝑆𝑖𝑔𝑛(𝑠𝑘𝑠𝑖𝑔, 𝑚). 
17. Set 𝑇𝑥𝑝𝑜𝑢𝑟 = (𝑟𝑡𝐴, 𝑛𝑓𝐴, 𝑐𝑚𝐵𝑣𝐴, 𝑝𝑘𝑠𝑖𝑔

𝐴 , ℎ, 𝜋𝐴, 𝐶𝐵, 𝜎) 
 
 
  Receive Transection  

Input: Public Parameter 𝑝𝑝. 
 Recipient Address (𝑎𝑑𝑑𝑟𝑝𝑘

𝐵 , 𝑎𝑑𝑑𝑟𝑠𝑘
𝐵 ). 

 Current Ledger  
Output: New coin 𝑐𝐵 . 

1. Parse 𝑎𝑑𝑑𝑟𝑝𝑘 = (𝑎𝑝𝑘
𝐵 , 𝑝𝑘𝑒𝑛𝑐

𝐵 ). 
2. Parse 𝑎𝑑𝑑𝑟𝑠𝑘 = (𝑎𝑠𝑘

𝐵 , 𝑠𝑘𝑑𝑒𝑐
𝐵 ). 

3. Parse 𝑇𝑥𝑝𝑜𝑢𝑟(𝑟𝑡𝐴, 𝑛𝑓𝐴, 𝑐𝑚𝐵𝑣𝐴, 𝑝𝑘𝑠𝑖𝑔
𝐴 , ℎ, 𝜋𝐴, 𝐶𝐵, 𝜎). 

4. Decrypt 𝐷𝐸𝐶𝑠𝑘𝑑𝑒𝑐(𝐶𝐵) = (𝑣𝐵, 𝜌𝐵, 𝑟𝐵, 𝑠𝐵) 
 If 𝑐𝑚𝐵 = 𝐶𝑂𝑀𝑀𝑠𝐵 (𝑣𝐵||𝐶𝑂𝑀𝑀𝑟(𝑎𝑝𝑘

𝐵 ||𝜌𝐵))  
 If 𝑛𝑓𝐵 = 𝑃𝑅𝐹𝑎𝑠𝑘(𝜌𝐵) does not appear in ledger 𝐿. 

5. 𝑐𝐵 = (𝑎𝑑𝑑𝑟𝑝𝑘
𝐵 , 𝑣𝐵, 𝜌𝐵, 𝑠𝐵, 𝑐𝑚𝐵) 

 
 



 
 

4 Sprout Shielded Transection 
 Key Generation  

To generate a new Sprout spending key, choose a uniformly random sequence of bits 𝑎𝑠𝑘. From 
the spending key 𝑎𝑠𝑘, generate the public address 𝑎𝑝𝑘  =  𝑃𝑅𝐹𝑎𝑠𝑘

𝑎𝑑𝑑𝑟(0), where the pseudo 
random function is defined as; 

𝑃𝑅𝐹𝑎𝑠𝑘
𝑎𝑑𝑑𝑟(0) = 𝑆𝐻𝐴256𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(1100||𝑎𝑠𝑘||08||0248), 

  Afterward, generate the public and private keys (𝑝𝑘, 𝑠𝑘) ←  𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝑝𝑟𝑜𝑢𝑡(1𝜆) for Diffie-
Hellman key exchange over Curve25519. The method of generating the public and private keys 
is as: let 𝑞 be the order of the group. For the private key 𝑠𝑘, choose a random number from the 
set {2, 3, … , 𝑞 − 1} and compute the public key 𝑝𝑘 =  𝑠𝑘 ⋅  𝐺, where 𝐺 the generator of the 
group Curve25519 is. The keys (𝑎𝑝𝑘, 𝑝𝑘) are the public addresses used to receive the coin, and 
(𝑎𝑠𝑘, 𝑠𝑘) are the private addresses used to spend the coin. 

 

 

Figure 2 Sprout Key Components 

 



 
 

 Note 
A Sprout note is a tuple 𝑛 =  (𝑎𝑝𝑘, 𝑣, 𝜌, 𝑟𝑐𝑚, 𝑚𝑒𝑚𝑜), where 𝑎𝑝𝑘 is the paying key of the 
recipient’s shielded payment address is, 𝑣 is an integer that represents the value of the coin, 𝜌 
is the input parameter for the function 𝑃𝑅𝐹𝑎𝑠𝑘

𝑛𝑓 = 𝑆𝐻𝐴256𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(1110||𝑎𝑠𝑘||08||𝜌) to 
derive the nullifier of the note. The value 𝑟𝑐𝑚 is the note commitment trapdoor used for 
generating the note commitment, and 𝑚𝑒𝑚𝑜 is the sequence of random bytes, called the memo 
field. 

 Spending Note 
Let 𝐴 and 𝐵 be two entities, and 𝐴 wishes to send his coin 𝑛𝑝

𝐴  =  (𝑎𝑝𝑘
𝐴 , 𝑣𝐴, 𝑟𝑐𝑚𝐴, 𝑚𝑒𝑚𝑜) to 

entity 𝐵. Let (𝑎𝑝𝑘
𝐵 , 𝑝𝑘𝐵) be the public address of 𝐵. The transaction from 𝐴 to 𝐵 consists of a 

data, called JoinSplit description. For the JoinSplit description, initially 𝐴 generates public and 
private keys for signing the transaction, called the JoinSplitSig key pair. 

JoinSplitPrivKeyA ⟵ JoinSplitSig. GenPrivate() 

JoinSplitPubKeyA ⟵ JoinSplitSig. DerivePublic(JoinSplitPrivKey) 

Next the sender chooses a random seed randomseed and selects the input node 𝑛𝑝𝐴. 
Afterward the sender 𝐴 compute 

ℎ𝑆𝑖𝑔 = Blacke2b-256("ZcashComputehSig"||hSigInput) 

Where in the above equation hSigInput is the string given as follows; 

hSigInput =  RandomSeed||nf A ||JoinSplitPrivKeyA 

Subsequently, the sender 𝐴 choose random number 𝜑𝐵 and create output note 𝑛𝑝𝐵. The step 
by step procedure of crating the note is given as follows;  

Choose uniformly random 𝑟𝑐𝑚𝐵 ⟵ NoteCommitSprout. GenTrapdoor(). 

Compute 𝜌𝐵 = 𝑆𝐻𝐴256𝐶𝑂𝑀𝑃𝑅𝐸𝑆𝑆(000||𝜑𝐵|| ℎ𝑆𝑖𝑔  ). 

Compute 𝑐𝑚𝐵 = 𝑆𝐻𝐴256(10110000||𝑎𝑝𝑘
𝐵 ||𝑣𝐵||𝜌𝐵||𝑟𝑐𝑚𝐵 ). 

The output note is 𝑛𝑝
𝐵  = (0𝑥00, 𝑣𝐵, 𝜌𝐵, 𝑟𝑐𝑚𝐵, 𝑚𝑒𝑚𝑜𝐵). The sender 𝐴 then encrypts 𝑛𝑝

𝐵 using 
a symmetric encryption scheme. Since the same secret key is used for both encryption and 
decryption in symmetric encryption, a key derivation function (KDF) is used. The details of 
the key derivation function and the procedures for encryption, decryption, signature, and zero-
knowledge proofs are given in the following subsection. 

4.3.1 Key Derivation function.  
For the secret key derivation the entity 𝐴 initially chose a secret number 𝑠𝐴 from the set 
{2,3, … , 𝑞 − 1} and compute ephemeral private key 𝑒𝑠𝑘

𝐴𝐵 = 𝑠𝐴𝑝𝑘𝐵 ( 𝑠𝐴𝑝𝑘𝐵 = 𝑠𝐴𝑠𝑘𝐵𝐺) over 
the Curve25519. Afterward 𝐴 computes a public ephemeral key 𝑒𝑝𝑘

𝐴 = 𝑠𝐴𝐺. Next, 𝐴 uses the 
ephemeral private key 𝑒𝑠𝑘

𝐴𝐵  to derive a secret key for the symmetric encryption scheme to 
encrypt the data 𝑛𝑝

𝐵 and sends it to 𝐵, who can use it later. The key derivation function is given 
as follows: 



 
 

𝐾𝑒𝑛𝑐
𝐴𝐵 = Black-256(“ZcashKDF” ||056||ℎ𝑠𝑖𝑔

𝐴  ||𝑒𝑠𝑘
𝐴𝐵 ||𝑒𝑝𝑘

𝐴  ||𝑝𝑘𝐵) 

4.3.2 Encryption (Sprout) 
To encrypt the note plaintext 𝑛𝑝

𝐵, the sender 𝐴 used a symmetric key encryption scheme AEAD 
CHACHA20 POLY1305 using the derived key 𝐾𝑒𝑛𝑐. For sprout we will denote the encryption 
function by 𝐸𝑁𝐶𝐾𝑒𝑛𝑐

𝐴𝐵  and the decryption function by 𝐷𝐸𝐶𝐾𝑒𝑛𝑐
𝐴𝐵 . So the ciphertext for the 

JointSplit description is given a follows; 

𝐶𝐵 = 𝐸𝑁𝐶𝑲𝒆𝒏𝒄
𝑨𝑩 (𝑛𝑝

𝐵). 

4.3.3 ZK-SNARK Statements 
For the JointSplit description the entity 𝐴 generate a ZK_SNARK statement 𝜋𝑍𝐾𝐽𝑜𝑖𝑛𝑡𝑆𝑝𝑙𝑖𝑡

𝐵  that 
assure that for given output parameters (𝑟𝑡𝐴, 𝑛𝑓𝐴, 𝑐𝑚𝐵, 𝑣𝐴, 𝑣𝐵, ℎ𝑠𝑖𝑔

𝐵 , ℎ𝐵) the prover i.e., A 
knows the inputs (𝑝𝑎𝑡ℎ𝐴, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴, 𝑛𝐴, 𝑎𝑠𝑘

𝐴 , 𝑛𝐵, 𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑀𝑎𝑟𝑘𝑙𝑒𝑃𝑎𝑡ℎ) such that the 
following conditions holds; 

i. The note 𝑛𝐴 = (𝑎𝑝𝑘
𝐴 , 𝑣𝐴, 𝜌𝐴, 𝑟𝑐𝑚𝐴, 𝑚𝑒𝑚𝑜𝐴) and 𝑛𝐵 = (𝑎𝑝𝑘

𝐵 , 𝑣𝐵, 𝜌𝐵, 𝑟𝑐𝑚𝐴, 𝑚𝑒𝑚𝑜𝐴). 
ii. For the note 𝑛𝐴 the 𝑝𝑎𝑡ℎ𝐴 and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴 is a valid Merkle path of depth from note 

commitment 𝑐𝑚𝐴 to the anchor root 𝑟𝑡𝐴.   
iii. The balance for input 𝑣𝐴 and output 𝑣𝐵 notes satisfied the equation i.e.,  𝑣𝐴 − 𝑣𝐵 ≥ 0 
iv. The nullifier 𝑛𝑓𝐴 = 𝑆𝐻𝐴256𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(1110||𝑎𝑠𝑘||𝜌𝐵 ). 
v. The public address 𝑆𝐻𝐴256𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(1100||𝑎𝑠𝑘||0256). 

vi. The non-malleability ℎ𝐴 = 𝑆𝐻𝐴256𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠(0||0||000||𝑎𝑠𝑘||ℎ𝑠𝑖𝑔
𝐴 ). 

vii. The uniqueness of 𝜌𝐵 = 𝑆𝐻𝐴256𝐶𝑂𝑀𝑃𝑅𝐸𝑆𝑆(000||𝜑𝐵|| ℎ𝑆𝑖𝑔
𝐴   ). 

viii. The note Commitment integrity 𝑐𝑚𝐵 = 𝑆𝐻𝐴256(10110000||𝑎𝑝𝑘
𝐵 ||𝑣𝐵||𝜌𝐵||𝑟𝑐𝑚𝐵 ). 

 JointSplit Transfers and Description 
Each transection in Sprout consist of zero or more JoinSplit description. A JoinSplit description 
consist of the data that describe a shielded value transfer. The data comprises 
(𝑣𝐴, 𝑣𝐵, 𝑟𝑡𝐴, 𝑛𝑓𝐴, 𝑐𝑚𝐵𝑒𝑝𝑘

𝐴 , 𝑟𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑒𝑑, ℎ𝑠𝑖𝑔
𝐴 , 𝜋𝑍𝐾𝐽𝑜𝑖𝑛𝑡𝑆𝑝𝑙𝑖𝑡

𝐵 , 𝐶𝐵), where 𝑣𝐴 denote the value 
of a spending input coin is and 𝑣𝐵 denote the value of the output coin. The anchor of the 
spending coin symbolize by 𝑟𝑡𝐴. The 𝑛𝑓𝐴 is the nullifier of the spending coin and 𝑐𝑚𝐵 is the 
note commitment of the output coin.  

 Signature  
Since we know that each transaction consists of one or more JoinSplit descriptions, any 
transaction that has at least one JoinSplit description must have a JoinSplit signature using 
Ed25519. Let `dataToBeSigned` be the hash value of the transaction. In this step, the sender 
of the coin computes the signature 𝜎𝐴  by signing `dataToBeSigned` with the signature private 
key `JoinSplitPrivKeyA` and includes the public validating key `JoinSplitPublicKeyA` and the 
signature 𝜎𝐴 in the transaction. Since the signing keys used for computing the signature are 
ephemeral, the user generates new signature key pairs for every transaction. For each key pair, 
the value ℎ𝑠𝑖𝑔

𝐴  given in the JoinSplit description and its integrity proof, provided in the ZK-
SNARK statement, verify that the owner of the private address 𝑎𝑠𝑘

𝐴  is authorized to use the 
private key. The transection 𝑇𝑥

𝐴 = (𝐽𝑜𝑖𝑛𝑆𝑝𝑙𝑖𝑡, 𝜎𝐴, JoinSplitPublicKeyA) included JoinSplitSig 
submitted to the peer to peer network. 



 
 

 Receiving Note. 
The entity 𝐵 receive the transaction data consist of JointSplit descriptions. Since the JointSplit 
description consist of the note data in encrypted from that entity 𝐵 will spend letter. So before 
the decryption the entity 𝐵 validate the signature and proof of the transaction. For validating 
the signature 𝐵 used the public signature key of 𝐴 and validate the signature. 
𝑉𝑒𝑟𝑖𝑓𝑦JoinSplitPublicKeyA(𝜎𝐴 ) = 1. Next, the receiver validate the proof of the Transection 
using proof validation public key. After, validating the proof the receiver derived the secret 
key and decrypt the note. The key derivation function and the decryption function is given in 
the following subsections.   

4.6.1 Key Derivation Function 
To derive the secret key the entity 𝐵 used the ephemeral key 𝑒𝑝𝑘 and his secret key to compute 
a shared secret key 𝑒𝑠𝑘

𝐴𝐵 = 𝑠𝑘𝐵𝑒𝑠𝑘
𝐴 = 𝑠𝑘𝐵𝑠𝑘𝐴𝐺 the Curve25519. Next, 𝐵 uses the ephemeral 

private key 𝑒𝑠𝑘
𝐴𝐵  to derive a secret key for the symmetric encryption scheme to decrypt the note 

data 𝑛𝑝
𝐵  received from 𝐵, who can use it later. The key derivation function is given as follows: 

𝐾𝑒𝑛𝑐
𝐴𝐵 = Black-256(“ZcashKDF” ||056||ℎ𝑠𝑖𝑔

𝐴  ||𝑒𝑠𝑘
𝐴𝐵 ||𝑒𝑝𝑘

𝐴  ||𝑝𝑘𝐵) 

4.6.2 Decryption (Sprout) 
To decrypt the note ciphertext 𝑛𝑝

𝐵, the reciver 𝐵 used a symmetric key encryption scheme 
AEAD CHACHA20 POLY1305 using the derived key 𝐾𝑒𝑛𝑐

𝐴𝐵 . Since, we used the notation 
𝐸𝑁𝐶𝐾𝑒𝑛𝑐

𝐴𝐵  for the encryption and 𝐷𝐸𝐶𝐾𝑒𝑛𝑐
𝐴𝐵  for the decryption function. The note plaintext for the 

JointSplit description is given a follows; 

𝑛𝑝
𝐵 = 𝐷𝐸𝐶𝐾𝑒𝑛𝑐

𝐴𝐵 (𝐶𝐵). 

After decrypting the note the receiver validate the note commitment that weather 𝑐𝑚𝐵is equal 
to 𝑐𝑚′ or not where 𝑐𝑚′ = 𝑆𝐻𝐴256(10110000||𝑎𝑝𝑘

𝐵 ||𝑣𝐵||𝜌𝐵||𝑟𝑐𝑚𝐵 ) and check the 
nullifier 𝑛𝑓𝐴 in the nullifier set.   

5 Sapling Shielded Transection    
In this section, we have presented complete detail of the sapling Protocol, used by the Zcash 

for shielded transection as of the sapling network upgrade, which satisfies certain security 

properties.   

 Key Generation  
For generating the Sapling key components, a new random Sapling spending key 𝑠𝑘 is generated by 

selecting a random number. From the spending key, derive spend authorizing key 𝑎𝑠𝑘, proof 

authorization key 𝑛𝑠𝑘, and outgoing viewing key 𝑜𝑣𝑘, defined as follows: 

𝑎𝑠𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("𝑍𝑐𝑎𝑠ℎ_𝐸𝑥𝑝𝑒𝑛𝑑"||𝑠𝑘||0) 

𝑛𝑠𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("𝑍𝑐𝑎𝑠ℎ_𝐸𝑥𝑝𝑒𝑛𝑑"||𝑠𝑘||1) 

𝑜𝑣𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("𝑍𝑐𝑎𝑠ℎ_𝐸𝑥𝑝𝑒𝑛𝑑"||𝑠𝑘||2) 



 
 

Afterward, use the spend authorizing key to generate 𝑎𝑘 = 𝑎𝑠𝑘 ⋅ 𝐺, and similarly, use the proof 

authorization key to generate 𝑛𝑘 = 𝑛𝑠𝑘 ⋅ 𝐻, where 𝑎𝑘 and 𝑛𝑘  are points on the elliptic curve, 

with generators 𝐺 and 𝐻 over the Jubjub curve, used for various purposes. Then, generate the 

incoming viewing key from 𝑎𝑘 and 𝑛𝑘 as follows: 

𝑖𝑣𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑠 − 256("𝑍𝑐𝑎𝑠ℎ𝑖𝑣𝑘"||𝑎𝑘||𝑛𝑘) 

Now, to create a new diversified payment address from the given incoming viewing key 𝑖𝑣𝑘, repeatedly 

choose a diversifier 𝑑 uniformly at random until the diversifier base 𝑔𝑑 is not equal to ⊥ (i.e., not 

invalid). Mathematically, 𝑔𝑑 can be derived as: 

𝑔𝑑 =  𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ𝑆𝑎𝑝𝑙𝑖𝑛𝑔(𝑑) 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ𝑆𝑎𝑝𝑙𝑖𝑛𝑔(𝑑) = 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝑈("𝑍𝑐𝑎𝑠ℎ_𝑔𝑑", 𝑑) 

The Hash function 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝑈 can be calculated as follows; 

𝐻 = 𝐵𝑙𝑎𝑐𝑘2𝑠 − 256("Zcash_gd", 𝑈||𝑀) 

𝑃 = 𝑎𝑏𝑠𝑡𝑗(𝐻) 

Compute 𝑄 = 8𝑃 if 𝑄 = 𝒪𝑗 return ⊥. Else return 𝑄. Afterward, compute the diversified transmission 

key 𝑝𝑘𝑑=𝑖𝑣𝑘 ⋅ 𝑔𝑑. Thus, the diversified Sapling payment address is 𝑑. The set of 

parameters (𝑠𝑘, 𝑎𝑠𝑘, 𝑛𝑠𝑘, 𝑜𝑣𝑘, 𝑖𝑣𝑘, 𝑎𝑘, 𝑛𝑘, 𝑝𝑘𝑑) is the key component in sapling. Furthermore, the 

relationship between the Sapling key component parameters is depicted in Fig. 1. 



 
 

 
Figure 3 Sapling Key Components 

 Note  
A sapling note is tuple 𝑛 = (𝑑, 𝑝𝑘𝑑, 𝑣, 𝑐𝑚, 𝑟), basically it represents the value 𝑣 ∈

{0,1,2, … , 𝑣𝑚𝑎𝑥} that is spendable by the user who hold the spending key Where 𝑑 of the 

recipient shielded payment address. 𝑝𝑘𝑑 is the diversified transmission key of the recipient 

shielded payment address, 𝑣 is the value of the note in zatoshi and 𝑟 is the random commitment 

trapdoor number.   

 Spend a Valid Coin 
Let user A have a Sapling shielded payment address (𝑠𝑘𝐴 , 𝑎𝑠𝑘

𝐴 , 𝑛𝑠𝑘
𝐴 , 𝑜𝑣𝑘

𝐴 , 𝑖𝑣𝑘
𝐴 , 𝑎𝑘

𝐴, 𝑛𝑘
𝐴, 𝑝𝑘𝑑

𝐴) and 
wish to send his valid coin 𝑛𝐴 = (𝑑𝐴, 𝑝𝑘𝑑

𝐴, 𝑣𝐴 , 𝑐𝑚𝐴, 𝑟𝐴, 𝜌𝐴, 𝑟𝑐𝑚𝐴) to user 𝐵, who has the 
Sapling key components (𝑠𝑘𝐵, 𝑎𝑠𝑘

𝐵 , 𝑛𝑠𝑘
𝐵 , 𝑜𝑣𝑘

𝐵 , 𝑖𝑣𝑘
𝐵 , 𝑎𝑘

𝐵, 𝑛𝑘
𝐵, 𝑝𝑘𝑑

𝐵). The transaction to spend the 
coin consists of a spend transfer and an output transfer. The spend transfer validates the coin, 
and with the output transfer, the recipient receives the coin and can then spend it. In the 
following subsection, we discuss spend and output descriptions, which include all the data that 
describe spend and output transfer. 

 Spend Description  
The spend description consist of (𝑐𝑣 𝐴, 𝑐𝑚𝐴, 𝑟𝑡𝐴, 𝑛𝑓 𝐴, 𝑟𝑝𝑘

𝐴 , 𝜋𝑍𝐾𝑆𝑝𝑒𝑛𝑑
𝐴 , 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡𝑆𝑖𝑔) where 𝑐𝑣𝐴 is 

value commitment integrity 𝑐𝑣𝐴 = 𝑣𝐴𝑉𝑠𝑎𝑝𝑙𝑖𝑛𝑔 + 𝑟𝑐𝑣𝐴𝑅𝑠𝑎𝑝𝑙𝑖𝑛𝑔, for the base elements 



 
 

𝑉𝑠𝑎𝑝𝑙𝑖𝑛𝑔 and 𝑅𝑠𝑎𝑝𝑙𝑖𝑛𝑔 over JubJub curve. The parameter 𝑐𝑚𝐴 is the note commitment.  The 
parameter 𝑛𝑓𝐴 = BLAKE2s − 256( “Zcash_nf”||nk||ρA)  is the nullifier. The 𝑟𝑝𝑘

𝐴 = 𝛼 ∙ 𝐺 + 𝑎𝑘 
is the randomized validating key that should be used to validate 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡𝑆𝑖𝑔 and 𝜋𝑍𝐾𝑆𝑝𝑒𝑛𝑑

𝐴  
is the ZKP statement and the 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡𝑆𝑖𝑔 is the spend authorization signature. 

4.3.1.1 Spend Statement 𝝅𝒁𝑲𝑺𝒑𝒆𝒏𝒅
𝑨   

The spend statement 𝜋𝑍𝑘𝑆𝑝𝑒𝑛𝑑 assure that for a given primary input (𝑟𝑡𝐴, 𝑐𝑣𝐴, 𝑛𝑓𝐴, 𝑟𝑘), the 
prover know the auxiliary inputs (𝑃𝑎𝑡ℎ, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑔𝑑

𝐴, 𝑝𝑘𝑑
𝐴, 𝑣𝐴, 𝑟𝑐𝑣𝐴, 𝛼, 𝑛𝑠𝑘𝐴,𝑐𝑚𝐴, 𝑟𝑐𝑚𝐴) 

such that the following conditions hold; 

i. The integrity of the note Commitment i.e., 𝑐𝑚𝐴 = NoteCommit𝑟𝑐𝑚
Sapling(𝑔𝑑

𝐴||𝑝𝑘𝑑
𝐴||𝑣𝐴). 

ii. The path and position (𝑝𝑎𝑡ℎ, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) of 𝑐𝑚𝐴 in the Markle tree is valid. 
iii. The value commitment integrity is valid i.e., 𝑐𝑣𝐴 = 𝑣𝐴𝑉𝑠𝑎𝑝𝑙𝑖𝑛𝑔 + 𝑟𝑐𝑣𝐴𝑅𝑠𝑎𝑝𝑙𝑖𝑛𝑔, . 
iv. The order of the group containing 𝑔𝑑 and 𝑎𝑘 is not the small. 
v. The nullifier is validated i.e., 𝑛𝑓𝐴 = BLAKE2s − 256( “Zcash_nf”||nk||ρA)  . 

vi. To prove that 𝑟𝑘 is randomized public key 𝑟𝑝𝑘
𝐴 = 𝛼𝐴 + 𝑎𝑠𝑘

𝐴 𝐺. 
vii. Diversified address integrity 𝑝𝑘𝑑

𝐴 = 𝑖𝑣𝑘
𝐴 ⋅ 𝑔𝑑

𝐴. 

4.3.1.2 Spend Authorization Signature 
The spend authorization signature (𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔) is used in Sapling to prove the knowledge 
of the spending key that authorizes the spending of the input note. In Sapling, the knowledge 
of the spending key cannot be proven directly in the spend statement. The motivation for 
keeping the signature separate is to allow devices that are limited in memory and computational 
capacity, such as hardware wallets, to authorize a Sapling shielded spend. The randomized 
signature RedDSA over the JubJub curve is used for signing. The complete details of the spend 
authorization signature are as follows: 

i. For each spend description the signer chooses a fresh signer randomizer 𝛼. 
ii. Let 𝑟𝐺 be the order of the group over JubJub Curve. So, compute a random secret 𝑟𝑠𝑘

𝐴 =
𝑎𝑠𝑘

𝐴 + 𝛼𝐴 𝑚𝑜𝑑 𝑟𝐺 using spending authorization key 𝑎𝑠𝑘
𝐴 . 

iii. In the third step compute the private key 𝑟𝑝𝑘
𝐴 = 𝑎𝑠𝑘

𝐴 𝐺 where 𝐺 is the generator of the 
group.  

iv. The 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔 = 𝑅𝑒𝑑𝐷𝑆𝐴
𝑟𝑠𝑘

𝐴
𝑠𝑖𝑔𝑛(𝑆𝑖𝑔𝐻𝑎𝑠ℎ), the 𝑆𝑖𝑔𝐻𝑎𝑠ℎ is the transection hash 

not associated with input.   

5.4.1 Output Description  
To send a note 𝑛𝐴 to user 𝐵, the sender 𝐴 initially selects a value 𝑣𝐵 from the set 
{0,1,2, … , 𝑣𝑚𝑎𝑥 } and constructs an output description. The output description consists of the 
data (𝑐𝑣𝐵, 𝑐𝑚𝐵, 𝑒𝑝𝑘

𝐴 , 𝐶𝑒𝑛𝑐
𝐵 , 𝐶𝑜𝑢𝑡

𝐵 , 𝜋𝑍𝐾𝑜𝑢𝑡𝑝𝑢𝑡
𝐵 ). Let (𝑑𝐵, 𝑝𝑘𝑑

𝐵) be the public addresses of user B. 
The user A performs the following steps to construct the output description: 

i. The user first checks that (𝑑𝐵, 𝑝𝑘𝑑
𝐵)  is of the type 𝐾𝐴𝑠𝑎𝑝𝑙𝑖𝑛𝑔 public prime subgroup, 

i.e., (𝑑𝐵, 𝑝𝑘𝑑
𝐵) should be a valid ctEdwards curve point on the JubJub curve. 

ii. Then, user A chooses a random commitment trapdoor 𝑟𝑐𝑣𝐵.  
iii. In step 4, user 𝐴 chooses a uniformly random ephemeral key 𝑒𝑠𝑘

𝐴  .  
iv. In this step, user 𝐴 also chooses a uniformly random commitment trapdoor 𝑟𝑐𝑚𝐵. 



 
 

v. Afterward, user 𝐴 computes 𝑐𝑣𝐵 = 𝑣𝐵𝑉𝑠𝑎𝑝𝑙𝑖𝑛𝑔 + 𝑟𝑐𝑣𝐵𝑅𝑠𝑎𝑝𝑙𝑖𝑛𝑔. 
vi.  Next, user 𝐴 computes 𝑐𝑚𝐵 = NoteCommit𝑟𝑐𝑚

Sapling(𝑔𝑑
𝐵||𝑝𝑘𝑑

𝐵||𝑣𝐵).  

The note plaintext 𝑛𝑝𝐵 = (𝑙𝑒𝑎𝑑𝐵𝑦𝑡𝑒𝑠, 𝑑𝐵, 𝑣𝐵, 𝑟𝑐𝑚𝐵, 𝑟𝑐𝑣𝐵). Subsequently, user 𝐴 encrypts 
𝑛𝑝𝐵 through a derived secret key. In the following subsections we have discussed the key 
derivation function, encryption and decryption.    

5.4.2 Key Derivation Function 
To derive the secret key the entity 𝐵 used the ephemeral key 𝑒𝑝𝑘 and his secret key to compute 
the secret key 𝑒𝑠𝑘

𝐴𝐵 = 𝑠𝑘𝐵𝑒𝑠𝑘
𝐴 = 𝑠𝑘𝐵𝑠𝑘𝐴𝐺 the Curve25519. Next, 𝐵 uses the ephemeral private 

key 𝑒𝑠𝑘
𝐴𝐵  to derive a secret key for the symmetric encryption scheme to decrypt the note data 

𝑛𝑝
𝐵  received from 𝐵, who can use it later. The key derivation function is given as follows: 

𝐾𝑒𝑛𝑐
𝐴𝐵 = Black-256(“Zcash_SaplingKDF” ||𝑒𝑠𝑘

𝐴𝐵 ||𝑒𝑝𝑘
𝐴  ) 

4.3.1.3 Encryption  
In Sapling, the note plaintext 𝑛𝑝𝐵 should be sent to user 𝐵 securely so that the user can spend 
it later. Therefore, user 𝐴 encrypts the data 𝑛𝑝𝐵. For encryption and decryption, a symmetric 
algorithm is used in the Sapling protocol. Since we know that symmetric key algorithms use 
the same key for both encryption and decryption, so, there must be a secure channel for sharing 
the secret key. To achieve this, the Sapling protocol deploys the Diffie-Hellman key exchange 
protocol to securely share the secret key. The complete details of the key exchange protocol 
and the encryption procedure are given as follows: 

i. First, select an ephemeral private key 𝑒𝑠𝑘
𝐴  randomly.  

ii. Compute the shared secret 𝑠𝑘𝐴𝐵 = 𝑒𝑠𝑘
𝐴 ⋅ 𝑝𝑘𝑑 where 𝑝𝑘𝑑

𝐵 is a point on the ctEdwards 
curve.  

iii. User A then computes the ephemeral public key 𝑒𝑝𝑘
𝐴 = 𝑒𝑠𝑘

𝐴 ⋅ 𝑔𝑑. 
iv.  Apply the key derivation function that we have discussed in the previous subsection 

and generate a secret key 𝐾𝐴𝐵. 
v.  Next, encrypt the data 𝐶𝑒𝑛𝑐

𝐵 = 𝐸𝑛𝑐𝐾𝐴𝐵(𝑛𝑝𝐵).  
vi.  Let 𝑜𝑐𝑘

𝐴 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 256(“𝑍𝑐𝑎𝑠ℎ_𝐷𝑒𝑟𝑖𝑣𝑒_𝑜𝑐𝑘", ||𝑐𝑣𝐵||𝑐𝑚𝐵||𝑒𝑝𝑘
𝐴 ) .  

vii. Finally, compute 𝐶𝑜𝑢𝑡 = 𝐸𝑛𝑐𝑜𝑐𝑘(𝑝𝑘𝑑
𝐵 ∥ 𝑒𝑠𝑘

𝐴 ) 
2.1.1.1 Output Sapling Statement  𝜋𝑍𝐾𝑜𝑢𝑡𝑝𝑢𝑡 

A valid instance of an output statement 𝜋𝑍𝐾𝑜𝑢𝑡𝑝𝑢𝑡 assures that given a primary input 
(𝑐𝑣𝐵, 𝑐𝑚𝐵, 𝑒𝑝𝑘

𝐴 ) the prover has the auxiliary input (𝑔𝑑
𝐵, 𝑝𝑘𝑑

𝐵, 𝑣𝐵, 𝑟𝑐𝐵, 𝑟𝑐𝑚𝑛𝑒𝑤, 𝑒𝑠𝑘
𝐴 ) such that the 

following conditions hold;   

vii. The note commitment integrity 𝑐𝑚𝑢
𝐵 = NoteCommit𝑟𝑐𝑚

Sapling(𝑔𝑑
𝐵||𝑝𝑘𝑑

𝐵||𝑣𝐵).  
i. The value commitment integrity is 𝑐𝑣𝐵 = 𝑣𝐵𝑉𝑠𝑎𝑝𝑙𝑖𝑛𝑔 + 𝑟𝑐𝑣𝐵𝑅𝑠𝑎𝑝𝑙𝑖𝑛𝑔. 

ii. The order of 𝑔𝑑
𝐵 is small. 

iii. The ephemeral key is public key 𝑒𝑝𝑘
𝐴 = 𝑒𝑠𝑘

𝐴 𝑔𝑑
𝐵. 



 
 

4.3.1.4 Decryption using incoming Viewing Key 
Let (𝑒𝑝𝑘𝐴, 𝐶𝑒𝑛𝑠

𝐵 , 𝐶𝑜𝑢𝑡
𝐵 ) be the transmitted note ciphertext components. The recipient must 

decrypt the ciphertext components 𝐶𝑒𝑛𝑐
𝐵  and 𝐶𝑜𝑢𝑡

𝐵  of the transmitted note data. The step-by-step 
decryption procedure is as follows: 

i. Compute the share secret 𝑠𝑘𝐴𝐵 = 𝑖𝑣𝑘
𝐵 𝑒𝑝𝑘

𝐴   . 
ii. 𝐾𝐴𝐵 = 𝐾𝐷𝐹(𝑠𝑘𝐵) 

iii. 𝑛𝑝𝐵 = 𝐷𝐸𝐶(𝐶𝑒𝑛𝑐
𝐵 ) 

iv. 𝑛𝑝𝐵 = (𝑑𝐵, 𝑣𝐵, 𝑟𝑐𝑚𝐵, 𝑚𝑒𝑚𝑜) 
v. 𝑔𝑑

𝐵 = 𝐷𝑖𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑𝐵) 
vi. 𝑝𝑘𝑑

𝐵 = 𝑖𝑣𝑘𝐵 ∗ 𝑔𝑑
𝐵  

vii. 𝑛 = (𝑑𝐵, 𝑝𝑘𝑑
𝐵, 𝑣𝐵, 𝑟𝑐𝑚𝐵) 

viii. Let 𝑐𝑚𝐵 = NoteCommit𝑟𝑐𝑚
Sapling(𝑔𝑑

𝐵||𝑝𝑘𝑑
𝐵||𝑣𝐵).  

ix. Compute 𝑜𝑐𝑘
𝐴 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 256(“𝑍𝑐𝑎𝑠ℎ_𝐷𝑒𝑟𝑖𝑣𝑒_𝑜𝑐𝑘"||𝑐𝑣||𝑐𝑚𝐵||𝑒𝑝𝑘

𝐴 )  
x. Compute 𝑜𝑝 = 𝐷𝐸𝐶𝑜𝑐𝑘(𝐶𝑜𝑢𝑡).  



 
 

6 Orchard Shielded Transection 
The Orchard protocol was deployed as part of the Zcash Network Upgrade 5 (NU5), which 
was activated on the mainnet at block height 1,687,104 on May 31, 2022. The NU5 upgrade 
includes several enhancements, notably the introduction of the Orchard shielded protocol. This 
new protocol simplifies and enhances the privacy features of Zcash by improving the efficiency 
and security of shielded transactions. A detailed explanation of the Orchard protocol is 
provided in the following subsections. 

6.1. Abstraction 

Before discussing the key components of Orchard, we will first define some terms and 
abstractions that are later used in the Orchard protocol.  

6.1.1 Pallas and Vesta  
Pallas and Vesta are the elliptic curves used in the Orchard. Vesta is used in the Orchard for 
the proof system, while Pallas is used in the application circuit. Both curves are designed to be 
efficiently implemented in ZK-SNARK circuits; however, Pallas is the curve used for the ZK-
SNARK application in the Orchard. 

In this document, we use the notation ℙ for the group of points (𝑥, 𝑦) that satisfy the equation 
of the Pallas curve 𝑦2 = 𝑥3 + 5 𝑚𝑜𝑑 𝑞ℙ alonge with the zero element 𝒪ℙ.  Similarly, the 
notation 𝕍 is used for set of points that satisfies the Vesta curve equation 𝑦2 = 𝑥3 + 5 𝑚𝑜𝑑 𝑞𝕍, 
where 𝑞ℙ = 2254 + 45560315531419706090280762371685220353 and 𝑞𝕍 = 2254 +
45560315531506369815346746415080538113 are the prime numbers. The order of ℙ is 
𝑞ℙ and the order of 𝕍 is 𝑞ℙ. 

6.1.2 Extract Function (𝐄𝐱𝐭𝐫𝐚𝐜𝐭ℙ) 
The Extract function is a mapping from the curve ℙ to the field ℤ𝑞ℙ, denoted by Extractℙ, 
defined as follows;  

Extractℙ: ℙ ∪⊥→ ℤ𝑞ℙ 

Extract𝕡(𝑄) = {
𝑥      𝑖𝑓    𝑄 = (𝑥, 𝑦)
⊥     𝑖𝑓       𝑄 = ⊥      
0      𝑖𝑓      𝑄 = 𝒪ℙ     

 

6.1.3 Hash to Field 
Hash to Field is a function defined as ℎ𝑎𝑠ℎ𝑡𝑜𝑓𝑖𝑒𝑙𝑑: 𝔹𝑛 × 𝔹𝑚 → 𝔽𝑞𝐺

2 , where 𝔹𝑛 denote the 
sequence of bytes of orbitrary length.   The function for the input ℎ𝑎𝑠ℎ𝑡𝑜𝑓𝑖𝑒𝑙𝑑

(𝑚𝑠𝑔, 𝐷𝑆𝑇) =
(𝑢0, 𝑢1)  is defined as follows; 

 Let DST′ = DST||𝑙𝑒𝑛𝑔𝑡ℎ(DST). 
 Let 𝑚𝑠𝑔′ = 0𝑥00128|| 𝑚𝑠𝑔 || [0,128] || [0] || 𝐷𝑆𝑇′  
 Let 𝑏0 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 512([0𝑥00]16, 𝑚𝑠𝑔′) 
 Let 𝑏1 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 512([0𝑥00]16, 𝑏0||[1]||𝐷𝑆𝑇′) 
 Let 𝑏2 = 𝐵𝐿𝐴𝐾𝐸2𝑏 − 512([0𝑥00]16, 𝑏0⨁𝑏1||[2]||𝐷𝑆𝑇′) 
 Return 𝑢0 = 𝑏1 𝑚𝑜𝑑 𝑞𝐺 and 𝑢1 = 𝑏2 𝑚𝑜𝑑 𝑞𝐺 . 



 
 

6.1.4 Group Hash 
The Group Hash is a function defined as 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝔾: 𝔹𝑛 × 𝔹𝑚 → 𝔾. The input to 
𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝔾 consists of a pair: the first element of the pair is the domain separator, which 
distinguishes the usage of the function for different purposes, and the second element is the 
message. Let (𝐷, 𝑀) be the input pair the 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎ𝔾 can be calculated as follows; 

i. Let 𝐷𝑆𝑇 = 𝐷||” − “||𝐶𝑢𝑟𝑣𝑒 𝑛𝑎𝑚𝑒||_XMD:BLACK_SSWU_RO_. 
ii. Let (𝑢0, 𝑢1) = ℎ𝑎𝑠ℎ𝑡𝑜𝑓𝑖𝑙𝑒𝑑

(𝑀, 𝐷𝑆𝑇). 
iii. Let 𝑄0 = 𝑚𝑎𝑝_𝑡𝑜_𝑐𝑢𝑟𝑣𝑒_𝑠𝑖𝑚𝑝𝑙𝑒_𝑠𝑤𝑢(𝑢0) 
iv. Let 𝑄1 = 𝑚𝑎𝑝_𝑡𝑜_𝑐𝑢𝑟𝑣𝑒_𝑠𝑖𝑚𝑝𝑙𝑒_𝑠𝑤𝑢(𝑢1) 

Return 𝑖𝑠𝑜𝑚𝑎𝑝(𝑄0 + 𝑄1)  

6.1.5 Sinsemilla Hash Function 
The Sinsemilla Hash Function is a collision-resistant hash function based on the discrete 
logarithm problem over elliptic curves. This hash function is specifically designed for Zcash 
Orchard, optimizing the use of lookups available in recent proof systems. The Sinsemilla Hash 
function can be denoted by 𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑜𝑖𝑛𝑡: 𝔹𝑛 × 𝔹𝑚 → ℙ ∪ {⊥} defined as follows; 

i. Compute 𝑛 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (𝑙𝑒𝑛𝑔𝑡ℎ(𝑀)
𝑘

) 
ii. Let 𝑟 = (𝑛 × 𝑘) − 𝑙𝑒𝑛𝑔𝑡ℎ(𝑀) 

iii. Concatenate 0𝑟 with the message 𝑀, i.e., 𝑀′ = 𝑀||0𝑟 
iv. Dived the message 𝑀′ into 𝑛 sub blocks of size𝑘, i.e., 𝑚1, 𝑚2, … , 𝑚𝑛. 
v. Let 𝒬(𝐷) = 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("𝑧. 𝑐𝑎𝑠ℎ: SinsemillaQ", 𝐷) 

vi. Let 𝒮(𝑚) = 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("𝑧. 𝑐𝑎𝑠ℎ: SinsemillaS", 𝑚) 
vii. Define a binary operation  

(𝑥, 𝑦) ⋇ (𝑥′, 𝑦′) = {

(𝑥, 𝑦) + (𝑥′, 𝑦′)    𝑖𝑓    (𝑥, 𝑦) ≠ 𝒪ℙ ≠ (𝑥′, 𝑦′)
                               𝑎𝑛𝑑 

                                     (𝑥, 𝑦) ≠⊥≠ (𝑥′, 𝑦′)
⊥                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

 

viii. Let 𝐴𝑐𝑐 = 𝒬(𝐷). 
ix. For 𝑖 form 1 upto 𝑛: 

 𝐴𝑐𝑐 = (𝐴𝑐𝑐 ⋇ 𝒮(𝑚𝑖)) ⋇ 𝐴𝑐𝑐 

Return 𝐴𝑐𝑐. 

6.1.6 Sinsemilla Commitments 
The Sinsemilla commitment is a commitment function that is based on Sinsemilla hash 
function, with additional randomized point on the Pallas curve. Mathematically the 
commitment can be written as; 

𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐶𝑜𝑚𝑚𝑖𝑡𝑟(𝐷, 𝑀) = {𝑀′ + 𝑟 ⋅ 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ(𝐷||"-r", "")    𝑖𝑓 𝑀′ ≠⊥
⊥               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    

 

In the above equation, 𝑀′ =  𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐻𝑎𝑠ℎ𝑇𝑜𝑃𝑜𝑖𝑛𝑡(𝐷||"-M", 𝑀). The Commit function 
is defined as follows; 

 Commitrivk
𝑖𝑣𝑘 (𝑥, 𝑦) = Extractℙ(𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐶𝑜𝑚𝑚𝑖𝑡𝑟("z.cash:Orchard-CommitIvk", 𝑥||𝑦)).  



 
 

6.1.7 Orchard Note Commitment  
When a note is created through a transaction, only a commitment to its content is publicly 
disclosed in the transaction's Action description. This commitment is added to the note 
commitment tree when the transaction is recorded on the block chain. This ensures that the 
value and recipient remain private, while the ZK-SNARK proof verifies the note’s existence 
on the block chain when it is spent. In the Orchard to create a note Sinsemilla Commitment has 
been used, the detail is given as follows; 

𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚
𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑥, 𝑦) = 𝑆𝑖𝑛𝑠𝑒𝑚𝑖𝑙𝑙𝑎𝐶𝑜𝑚𝑚𝑖𝑡𝑟("z.cash:Orchard-NoteComit", 𝑥||𝑦) 

6.1.8 Derive Internal FVK  
The function to derive internal FVK is denoted by DeriveInternalFVKOrchard defined as 
follows;   

i. Let 𝐾 = 𝑟𝑖𝑣𝑘 represented in little-endian order. 
ii. 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

= 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",K,0x83||𝑎𝑘||𝑛𝑘) 𝑚𝑜𝑑 𝑟ℙ 
iii. Return (𝑎𝑘, 𝑛𝑘, 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙

). 
6.1.9 Diversify Hash 
Let 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ be as defined in 6.1.5, which is a function that map a string of bytes into the 
point of Pallas and Vesta Elliptic curve Point. Using the group hash the diversify hash can be 
calculated as follows;  

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑑) = {𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("z.cash:Orchard-gd", "")      𝑖𝑓 𝑃 = 𝒪ℙ   
     𝑃                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑃 = 𝐺𝑟𝑜𝑢𝑝𝐻𝑎𝑠ℎℙ("z.cash:Orchard-gd", 𝑑). 
6.1.10 𝒓𝒆𝒑𝒓𝔾 Function  
Let 𝔾 be an Elliptic, then the 𝑟𝑒𝑝𝑟𝔾 is function from 𝔾 to the set of bytes of length 𝑙𝔾, defined 
as follows; 

𝑟𝑒𝑝𝑟𝔾(𝒪𝔾 ) = 0 

𝑟𝑒𝑝𝑟𝔾((𝑥, 𝑦) ) = {𝑥 𝑚𝑜𝑑 𝑞𝔾 + 2255   𝑖𝑓 𝑦 ≡ 1 𝑚𝑜𝑑 2
𝑥 𝑚𝑜𝑑 𝑞𝔾                𝑖𝑓 𝑦 ≡ 0 𝑚𝑜𝑑 2  

 Orchard Key Component.  
A new Orchard spending key can be generated by choosing a random sequence 𝑠𝑘 . From the 
spending key 𝑠𝑘 , generate the following keys, generate the spend authorization key 𝑎𝑠𝑘, 
nullifier deriving key 𝑛𝑘 and the key for commitment randomness given as follows  

𝑎𝑠𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝑠𝑘||6) 𝑚𝑜𝑑 𝑟ℙ 
𝑛𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝑠𝑘||7) 𝑚𝑜𝑑 𝑞ℙ 
𝑟𝑖𝑣𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝑠𝑘||8) 𝑚𝑜𝑑 𝑟ℙ 

From the spend authorization, compute the public key that validates the spend authorization, 
called the "validate spend authorization key" 𝑎𝑘

ℙ defined as follows 
𝑎𝑘

ℙ = 𝑎𝑠𝑘 ∙ 𝐺𝑜𝑟𝑐ℎ𝑎𝑟𝑑  
𝑎𝑘 = Extractℙ(𝑎𝑠𝑘 ∙ 𝐺𝑜𝑟𝑐ℎ𝑎𝑟𝑑) 

From the 𝑛𝑘 and 𝑎𝑘 compute the incoming viewing key 𝑖𝑣𝑘 using the Commit function defined 
as follows; 

𝑖𝑣𝑘 = Commitrivk
𝑖𝑣𝑘 (𝑎𝑘, 𝑛𝑘) 

Let 𝐾 = 𝑟𝑖𝑣𝑘 represented in little-endian order and suppose  



 
 

𝑅 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝐾||0𝑥82||𝑎𝑘||𝑛𝑘). 
(𝑎𝑘𝑛𝑘, 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 ) = DeriveInternalFVKOrchard(𝑎𝑘, 𝑛𝑘, 𝑟𝑖𝑣𝑘) 

Let 𝑑𝑘 be the first 32 bytes of 𝑅 and 𝑜𝑣𝑘 be reaming 32 bytes of 𝑅 and 𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑟𝑖𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  
represented in little-endian order.  

𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend",||𝐾𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙||0𝑥82||𝑎𝑘||𝑛𝑘). 
Let 𝑑𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  be the first 32 bytes of 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 and 𝑜𝑣𝑘𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙  be reaming 32 bytes of 𝑅𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙. 
Afterward create a new diversified payment address from the given incoming viewing 
key (𝑑𝑘, 𝑖𝑣𝑘). To do this first choose a diversifier index uniformly and calculate the diversifier 
𝑑 and the diversified transmission key 𝑝𝑘𝑑, the procedure is given as follows; 

d = FF1 − AES256𝑑𝑘(“”, Index) 
𝑔𝑑

ℙ = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑) 
𝑝𝑘𝑑

ℙ = 𝑖𝑣𝑘 ∙ 𝑔𝑑
ℙ 

FF1-AES256 is a format-preserving encryption algorithm that uses AES-256. It provides a 
secure pseudo-random permutation for a fixed empty string “” as a tweak. The relationship 
between the key components of the Orchard is depicted in Fig 4. 

 

Figure 4 Orchard Key Components 

 Note 
The orchard note is the set (𝑑, 𝑝𝑘𝑑, 𝑣, 𝜌, 𝜓, 𝑟𝑐𝑚), where 𝑑 is the diversifier, 𝑝𝑘𝑑 is diversifier 

public key address, 𝑣 is the value of the coin, 𝜌 and 𝜓 is the value to compute the nullifier and 

𝑟𝑐𝑚 is the random commitment trapdoor.   

  Spending a Valid Coin (Orchard) 
Let 𝐴 be user with orchard shielded payment address 
(𝑑𝐴, 𝑝𝑘𝑑𝐴

ℙ , 𝑑𝑘𝐴, 𝑛𝑠𝑘
𝐴 , 𝑜𝑣𝑘

𝐴 , 𝑖𝑣𝑘
𝐴 , 𝑎𝑘

𝐴, 𝑛𝑘
𝐴, 𝑠𝑘

𝐴, 𝑟𝑖𝑣𝑘
𝐴 ) wishes to send his valid coin 𝑛𝐴 =



 
 

(𝑑𝐴, 𝑝𝑘𝑑𝐴
ℙ , 𝑣𝐴, 𝜌𝐴, 𝜓𝐴, 𝑟𝑚) to a user 𝐵 with orchard shielded payment addresses(𝑑𝐵, 𝑝𝑘𝑑𝐵

ℙ ). 
Initially, the sender 𝐴 construct a transaction with one or more Action descriptions.  For each 
description the sender 𝐴 chose a value 𝑣𝐵 and the distention payment address (𝑑𝐵, 𝑝𝑘𝑑𝐵

ℙ ) and 
perform the following steps.   

i. Calculate that 𝑝𝑘𝑑𝐵
ℙ is a type of orchard public key. 

ii. Calculate 𝑔𝑑𝐵
ℙ = 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ𝑜𝑟𝑐ℎ𝑎𝑟𝑑(𝑑𝐵). 

iii. Let 𝜌𝐵 = 𝑛𝑓𝐴, where 𝑛𝑓𝐴, the nullifier of the input note. 
iv. Derive 𝑒𝑠𝑘 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||4||𝜌) 𝑚𝑜𝑑 𝑟ℙ. 

If 𝑒𝑠𝑘 ≡ 0, repeat the above steps. 

v. Compute 𝑟𝑐𝑚𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||5||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 
vi. Compute 𝜓𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||9||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 

Let 𝑐𝑣𝑛𝑒𝑡 be the commitment note the input note 𝑣𝐴 minus 𝑣𝐵 of the input note for this action 
transfer using the 𝑟𝑐𝑣.  

vii. Let 𝑐𝑚𝑥
𝐵 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡ℙ (𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚

𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑔𝑑𝐵
ℙ , 𝑣𝐵, 𝜌𝐵, 𝜓𝐵)). 

viii. Let 𝑛𝐵 = (0𝑥02, 𝑑𝐵, 𝑣𝐵, 𝑟𝑠𝑒𝑒𝑑, 𝑚𝑒𝑚𝑜) 

In the above 𝑚𝑒𝑚𝑜 is 512 byte optional part of the transection that allow user to attached 
arbitrary part of the transection.  The sender then encrypt the note 𝑛𝐵 to the recipient diversified 
transmission key 𝑝𝑘𝑑𝐵

ℙ  with diversified base 𝑔𝑑
ℙ, and to the outgoing viewing key 𝑜𝑣𝑘, resulting 

the transmitted note ciphertext (𝑒𝑝𝑘
ℙ , 𝐶𝑒𝑛𝑐, 𝐶𝑜𝑢𝑡).  The procedure is given in the following 

subsection. 

6.4.1 Encryption  
In Orchard, the note 𝑛𝐵should be sent to user B securely, so that the user can later spend it. 
Therefore, user 𝐴 encrypts the data 𝑛𝐵using symmetric key encryption scheme. The symmetric 
algorithm AEAD_CHACHA20_POLY1305 is used in both the Sapling and Orchard protocols 
for encryption and decryption. Since we know that for symmetric key algorithms, the same key 
is used for both encryption and decryption, so, there must be a secure channel for sharing the 
secret key that will be used for both operations. To achieve this, both the Sapling and Orchard 
protocols use the Diffie-Hellman key exchange protocol to securely share the secret key. The 
complete details of the key exchange protocol and the encryption procedure are provided as 
follows: 

i. Compute the shared secret 𝑠𝑘𝐴𝐵
ℙ = 𝑒𝑠𝑘 ∙ 𝑝𝑘𝑑𝐵

ℙ , where 𝑝𝑘𝑑𝐵
ℙ  is the point of ctEdward 

curve. 
ii. The user 𝐴 compute ephemeral public key 𝑒𝑝𝑘

ℙ = 𝑒𝑠𝑘 ∙ 𝑔𝑑𝐵
ℙ  

iii. Derive a symmetric key 𝐾𝐴𝐵 = BLAKE2b − 256(“Zcash_OrchardKDF”, 𝑠𝑘𝐴𝐵
ℙ ||𝑒𝑝𝑘

ℙ  ).  
iv. Next encrypt the data 𝐶𝑒𝑛𝑐 = 𝐸𝑁𝐶𝐾𝐴𝐵(𝑛𝐵) 

If 𝑜𝑣𝑘 =⊥ 

Choose a random 𝑜𝑐𝑘 and 𝑜𝑝 from the set of bytes.  

vi. Let 𝑐𝑣 = 𝑟𝑒𝑝𝑟𝔾(𝑐𝑣). 



 
 

vii. 𝑐𝑚∗ = Extract𝔾(𝑐𝑚). 
viii. Let 𝑜𝑐𝑘 = BLAKE2b − 256(“Zcash_Orchardock”, 𝑜𝑣𝑘||cv||cm∗||e𝑝𝑘

ℙ ).  
ix. Let 𝑜𝑝 = (𝑝𝑘𝑑𝐵

ℙ ||𝑒𝑠𝑘). 
x. Let 𝐶𝑜𝑢𝑡 = 𝐸𝑁𝐶𝑜𝑐𝑘

(𝑜𝑝). 

6.4.2 Decryption using incoming Viewing Key 
Let (𝑒𝑝𝑘

ℙ , 𝐶𝑒𝑛𝑐, 𝐶𝑜𝑢𝑡) be the transmitted ciphertext from the output description. The recipient 𝐵 must 
decrypt 𝐶𝑒𝑛𝑐 using the ephemeral key. However, only the holder of 𝑜𝑣𝑘  can decrypt the ciphertext 𝐶𝑜𝑢𝑡. 
The step-by-step decryption procedure is as follows: 

i. Compute the share secret 𝑠𝑘𝐴𝐵
ℙ = 𝑖𝑣𝑘

𝐵 ∙ 𝑒𝑝𝑘
ℙ . 

ii. Derive symmetric key 𝐾𝐴𝐵 = BLAKE2b − 256(“Zcash_OrchardKDF”, 𝑠𝑘𝐴𝐵
ℙ ||𝑒𝑝𝑘

ℙ  ). 
iii. Decrypt the note ciphertext 𝑛𝐵 = 𝐷𝐸𝐶𝐾𝐴𝐵(𝐶𝑒𝑛𝑐). 
iv. Extract 𝑛𝐵 = (0𝑥02, 𝑑𝐵, 𝑣𝐵, 𝑟𝑠𝑒𝑒𝑑, 𝑚𝑒𝑚𝑜). 
v. Compute 𝑔𝑑𝐵

ℙ = 𝐷𝑖𝑒𝑟𝑠𝑖𝑓𝑦𝐻𝑎𝑠ℎ(𝑑𝐵) 
vi. Derive the public key 𝑝𝑘𝑑𝐵

ℙ = 𝑖𝑣𝑘
𝐵 ∙ 𝑔𝑑𝐵

ℙ . 
vii. Let 𝜌𝐵 = 𝑛𝑓𝐴  

viii. Compute 𝜓𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||9||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 
vii. Compute 𝑟𝑐𝑚𝐵 = 𝐵𝑙𝑎𝑐𝑘2𝑏 − 512("Zcash_Expend"||𝑟𝑠𝑒𝑒𝑑||5||𝜌𝐵) 𝑚𝑜𝑑 𝑟ℙ. 
ix. The note that receives 𝐵 consist of 𝑛𝐵 = (𝑝𝑘𝑑

𝐵, 𝑑𝐵, 𝑣𝐵, 𝜓𝐵, 𝑟𝑐𝑚𝐵). 

The 𝑜𝑣𝑘 can only decrypt the ciphertext 𝐶𝑜𝑢𝑡. To decrypt the ciphertext 𝐶𝑜𝑢𝑡, the user have 
perform the following steps. 

i. Let 𝑜𝑐𝑘 = BLAKE2b − 256(“Zcash_Orchardock”, 𝑜𝑣𝑘||cv||cm∗||e𝑝𝑘
ℙ ). 

ii. Compute 𝑜𝑝 = 𝐷𝐸𝐶𝑜𝑐𝑘(𝐶𝑜𝑢𝑡). 

 Action Description.  
Orchard introduces the notion of Action transfer, each of which can optionally perform an input 
optionally perform an output. An Action description consist of data (𝑐𝑣𝑛𝑒𝑡, 𝑟𝑡𝐵, 𝑛𝑓𝐴, 𝑟𝑘𝐴,
𝑆𝑝𝑒𝑛𝐴𝑢𝑡ℎ𝑆𝑖𝑔𝐴, 𝑐𝑚𝐵, 𝑒𝑝𝑘𝐴, 𝐶𝑒𝑛𝑐

𝐵 , 𝐶𝑒𝑛𝑐
𝐵 , 𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑, 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡, 𝜋) included in a 

transaction that describes the action transfer. The detail of the data are provided as follows; 

i. 𝑐𝑣𝑛𝑒𝑡: is the value commitment to the spent note minus output note.  
ii.  𝑟𝑡𝐴: denote the anchor for the output treestate of the previous block.   

iii.  𝑛𝑓𝐴: is the nullifier for the input note 𝑛𝐴. 
iv. 𝑟𝑘𝐴: is validation key for the 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔𝐴. 
v. 𝑆𝑝𝑒𝑛𝑑𝐴𝑢𝑡ℎ𝑆𝑖𝑔𝐴: is the spend authorization signature. 

vi. 𝑐𝑚𝐵: is the note commitment to the output note.  
vii. 𝑒𝑝𝑘: is the ephemeral key that is used shared a secret for encryption. 

viii. 𝐶𝑒𝑛𝑐: is the ciphertext component for the encrypted output note. 
ix. 𝐶𝑜𝑢𝑡: is the ciphertext component that allow the holder of the outgoing cipher key to 

recover the recipient diversified transmission key 𝑝𝑘𝑑𝐵
ℙ  and the ephemeral private 

key 𝑒𝑠𝑘. 
x. The 𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑 is the flag that is set in order to enable the non-zero valued spends 

in this action.  
xi. 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡: is the flag that is set to enable non-zero valued outputs in this action.  



 
 

xii. 𝜋: is the zero-knowledge proof with primary input (𝑐𝑣𝑛𝑒𝑡, 𝑛𝑓𝐴, 𝑟𝑘𝐴, 𝑐𝑚𝑥
𝐴,

𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑𝑠, 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝑠) for the action statement.   

We have already discussed the encryption and decryption procedures for encrypting the note's 
plaintext and ciphertext. In the following subsections, the Zero-Knowledge Proof and Binding 
Signature are discussed in more detail. 

5.3.2.1 Action Statement 𝝅𝑨  
The spend statement 𝜋𝐴 assure that for a given primary input (𝑟𝑡𝐴, 𝑐𝑣𝑛𝑒𝑡, 𝑛𝑓𝐴, 𝑟𝑘𝐴, 𝑐𝑚𝑥

𝐴,
𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑, 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡) the prover know the auxiliary inputs 
(𝑃𝑎𝑡ℎ, 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑔𝑑𝐴

ℙ , 𝑝𝑘𝑑𝐵
ℙ , 𝑣𝐴, 𝜌𝐴, 𝜓𝐴, 𝑟𝑐𝑚𝐴, 𝑐𝑚𝐴, 𝛼𝐴, 𝑛𝑘, 𝑟𝑖𝑣𝑘𝐴, 𝑔𝑑𝐵

ℙ , 𝑝𝑘𝑑𝐵
ℙ , 𝑣𝐵, 𝜓𝐵, 𝑟𝑐𝑚𝐵) 

such that the following conditions hold; 

i. Note Commitment integrity: 𝑐𝑚𝑥
𝐴 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡ℙ (𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚

𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑔𝑑𝐴
ℙ ,  𝑣 𝐴, 𝜌𝐴, 𝜓𝐴)). 

ii. The path and position (𝑝𝑎𝑡ℎ, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) of 𝑐𝑚𝐴 in the Markle tree is valid. 
iii. Value commitment integrity: 𝑐𝑣𝑛𝑒𝑡 = 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑣

𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑣𝐴 − 𝑣𝐵). 
iv. Nullifier: 𝑛𝑓𝐴 = 𝐸𝑥𝑡𝑟𝑎𝑐𝑡ℙ( PoseidonHash(nkA, 𝜌𝐴) + 𝜓𝐴 𝑚𝑜𝑑 𝑞𝑝 + 𝑐𝑚𝐴 ). 
v. Randomized public key:  𝑟𝑘𝐴

ℙ = (𝛼𝐴 + 𝑎𝑠𝑘
𝐴 )ℙ. 

vi. Diversified address: 𝑝𝑘𝑑𝐴
ℙ = 𝑖𝑣𝑘𝐴 ∙ 𝑔𝑑𝐴

ℙ . 

vii. Incoming viewing key 𝑖𝑣𝑘
𝐴 =  Commit

rivk
A

𝑖𝑣𝑘
𝐴

(𝑎𝑘
𝐴, 𝑛𝑘

𝐴). 

viii. New note commitment 𝑐𝑚𝐴 = 𝑁𝑜𝑡𝑒𝐶𝑜𝑚𝑚𝑖𝑡𝑟𝑐𝑚
𝑂𝑟𝑐ℎ𝑎𝑟𝑑 (𝑔𝑑𝐵

ℙ  ||𝑝𝑘𝑑𝐵
ℙ || 𝑣𝐵 ||𝜌𝐵||𝜓𝐵 ),  

ix. Enable spend flag 𝑣𝐴 = 0 or 𝑒𝑛𝑎𝑏𝑙𝑒𝑆𝑝𝑒𝑛𝑑𝑠 = 1. 
x. Enable Output flag 𝑣𝐵 = 0 or 𝑒𝑛𝑎𝑏𝑙𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝑠 = 1. 

6.5.1 Balance and Binding Signature 
The net value of orchard spend minus output in a transaction is called the orchard balancing 
value denoted by 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑. The consistency of 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑 with value commitment 
in Action description is enforced by the Orchard binding signature. The role of this signature 
in the Orchard pool is to prove that the net value spend by Action transfer is consistent with 
the 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑 field of the transaction. For the binding signature the notion of 
Homomorphic Pedersen commitment is introduced. Let 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ∈ ℙ∗ and 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ∈ ℙ∗ be 
the base elements. Let ⊞ be the binary operation addition of private keys defined as:  

⊞: Sign. Privat × Sign. Privat → Sign. Privat 

Suppose ⊟ be the additive inverse operation defined on the set of private key i.e., 𝑠𝑘 ⊞
(⊟ 𝑠𝑘) = 𝒪⊞. Let ⊕ be the binary operation addition defined on the set of public key: 

⊕: Sign. Public × Sign. Public → Sign. Public 

Let ⊖ be additive inverse binary operation defined on the set of public key i.e., 𝑝𝑘 ⊕
(⊖ 𝑝𝑘) = 𝒪⊖.  Now that a transaction has 𝑛 Action description with value commitment 
𝑐𝑣1

𝑛𝑒𝑡, … , 𝑐𝑣𝑛
𝑛𝑒𝑡 committing to a value 𝑣1

𝑛𝑒𝑡, … , 𝑣𝑛
𝑛𝑒𝑡 with randomness 𝑟𝑐𝑣1

𝑛𝑒𝑡, … , 𝑟𝑐𝑣𝑛
𝑛𝑒𝑡.  The 

orchard balancing value 𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑟𝑐ℎ𝑎𝑟𝑑 = ∑ 𝑣𝑖
𝑛𝑒𝑡𝑛

𝑖=1 , but the validator cannot check it directly 
because the value are hidden by the commitment, therefore validator calculate the transection 
binding validating key: 



 
 

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = (⊕𝑖=1

𝑛 𝑐𝑣𝑖
𝑛𝑒𝑡) ⊖ 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0

𝑜𝑟𝑐ℎ𝑎𝑟𝑑(𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑜𝑟𝑐ℎ𝑎𝑟𝑑) 

In the above equation 𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 is a function defined as 

𝑉𝑎𝑙𝑢𝑒𝐶𝑜𝑚𝑚𝑖𝑡0
𝑜𝑟𝑐ℎ𝑎𝑟𝑑(𝑣𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑜𝑟𝑐ℎ𝑎𝑟𝑑) = [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

𝑐𝑣𝑖
𝑛𝑒𝑡 = [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⊕ [⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡] ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

Implies  

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⊕ [⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡] ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⊖ [⊞𝑖=1

𝑛 𝑣𝑖
𝑛𝑒𝑡] ∙ 𝑉𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = [⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡] ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

Since the signer know𝑟𝑐𝑣1
𝑛𝑒𝑡, 𝑟𝑐𝑣2

𝑛𝑒𝑡, … , 𝑟𝑐𝑣𝑛
𝑛𝑒𝑡, so they can calculate the corresponding 

signing key  

𝑏𝑠𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 =⊞𝑖=1

𝑛 𝑟𝑐𝑣𝑖
𝑛𝑒𝑡 

In order to check the implementation the signer should check that either the public key 𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

is equal to creating the public key from the private key 𝑏𝑠𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 mathematically defined as  

𝑏𝑣𝑘
𝑜𝑟𝑐ℎ𝑎𝑟𝑑 = 𝑏𝑠𝑘

𝑜𝑟𝑐ℎ𝑎𝑟𝑑 ⋅ 𝑅𝑜𝑟𝑐ℎ𝑎𝑟𝑑 

Let SigHash be a transaction hash containing action description using SIGHASH 
type SIGHASH_ALL.  So the validator check the balance by validating  

BindingSig𝑂𝑟𝑐ℎ𝑎𝑟𝑑. Validate𝑏𝑣𝑘
𝑂𝑟𝑐ℎ𝑎𝑟𝑑(𝑆𝑖𝑔𝐻𝑎𝑠ℎ, bindingSigOrchard) = 1. 

Thus checking the orchard binding signature ensure that the action transfer in the transection 
balance without their individual net value being revealed. 

6.5.2 Spending Authorization Signature  
In Orchard the concept of SpendAuthSig has been used in order to prove the knowledge of the 
spending key authorizing spending of an input note. In this document the notation 
SpendAuthSigOrchard  is used for spend authorization signature scheme. The knowledge of 
spending could have been proven directly in the action statement, however the reason behind 
a separate signature is to allow devises that a limited to resources such as Hardware wallet 
authorize the shielded spend, as these devices cannot create and may not be verified zk-SNARK 
proof for a statement of the size needed using the Hola 2 proving system. The validating key 
of the signature must be revealed in the Action description so that the signature can be checked 
by the validator. To ensure that the validating key cannot be linked with the spending key 𝑎𝑠𝑘 
from which the note was spent, in zcash a signature scheme has been used with re-randomizable 
keys. In the Action statement prove that this validating key is a re-randomization of the spend 
authorization key 𝑎𝑘 with a randomizer known to the signer. The spend authorization signature 
is over the SIGHASH transaction has, so that it cannot be replied in other transection.   

Let SigHash be the SIGHASH transaction hash using the SIGHASH type SIGHASH_ALL. Let 
𝑎𝑠𝑘

𝐴  be the spend authorization key. The detail is given as follows; 

i. For each action description the signer choose a fresh randomizer 𝛼. 
ii. Compute 𝑟𝑠𝑘 = 𝛼 + 𝑎𝑠𝑘. 



 
 

iii. Let 𝑟𝑘 = 𝛼 ∙ 𝐺𝑎𝑘
ℙ + 𝑎𝑘

ℙ. 
iv. Generate a proof 𝜋 of the action statement with 𝛼 in the auxiliary input and 𝑟𝑘 in the 

primary input.     
v. Let SpendAuthSig = Sigrsk

(𝑆𝑖𝑔𝐻𝑎𝑠ℎ) 

The resulting SpendAuthSig and the proof 𝜋 are included in the Action description.  

7 Cryptographic primitive  
In the previous sections, we discussed a generalized overview of various shielded payment 

protocols. We have seen the cryptographic primitive such as random number generators, hash 

functions, signature algorithms, zero-knowledge proof algorithms, and encryption algorithms 

are used. In this section, we provide a detailed explanation of these algorithms 

i. The pseudo rando function 𝑃𝑅𝐹𝑘(𝑋) is the 𝑆𝐻𝐴256(1110||𝑘252−𝑏𝑖𝑡||𝑋256−𝑏𝑖𝑡). 

ii. The note commitment function 𝐶𝑂𝑀𝑀𝑟(𝑋) = 𝑆𝐻𝐴256(𝑋||𝑟). 

iii. The 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦 is a function that diversify an element into the base element of the 

Elliptic Curve. 

iv. The Key Derivation Function (KDF) is used to securely share a secret key. In Zcash, 

for all shielded payment schemes, i.e., Sprout, Sapling, and Orchard, the Diffie-

Hellman key exchange protocol is used over the elliptic curve. 

v. We have seen that for secure node parameter transmission, a symmetric encryption 

scheme is used. The symmetric encryption scheme is 

AEAD_CHACHA20_POLY1305, which is an authenticated encryption scheme with 

associated data. In Zcash, the algorithm is used with empty associated data and an all-

zero nonce. 

vi. For signing a transaction, Zcash uses multiple signature algorithms: one for transparent 

transactions and three for shielded payment schemes (Sprout, Sapling, and Orchard). 

 The transparent input signatures use ECDSA over the secp256k1 curve, as in 

Bitcoin. 

 For Sprout, the signing procedure is called JoinSplitSig, which is used to sign 

transactions that contain at least one JoinSplit description. The signature algorithm 

used for JoinSplitSig is Ed25519. 

 In Sapling, the signature algorithms used are SpendAuthSig, for signing the 

authorization of spend transfers, and BindingSig, for enforcing the balance between 

spend and output transfers. The signature algorithm used for both SpendAuthSig 



 
 

and BindingSig is RedDSA over the JubJub curve. The parameters for RedDSA 

over the JubJub curve are as follows: 
𝑝 =  52435875175126190479447740508185965837690552500527637822603658699938581184513 

𝑎 = 52435875175126190479447740508185965837690552500527637822603658699938581184512 

𝑑 = 19257038036680949359750312669786877991949435402254120286184196891950884077233 

𝑥 = 8076246640662884909881801758704306714034609987455869804520522091855516602923 

𝑦 = 13262374693698910701929044844600465831413122818447359594527400194675274060458 

𝑞 = 6554484396890773809930967563523245729705921265872317281365359162392183254199 

Where 𝑝 is the prime number, the integers 𝑎 and 𝑑 are the parameter the 

equation of the following ctEdward curve 

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 

 The generator 𝐺 generate a subgroup of order 𝑞. 

 In orchard binding signature is used to enforce balance of action transfer and 

prevent their reply. The signing algorithm used for the signature is the RedDSA 

over the pallas curve.   

The group generated by the pallas curve is the set of points that satisfied the equation 

of short Weierstrass equation given as follows; 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝  
𝑝 = 28948022309329048855892746252171976963363056481941560715954676764349967630337, 

𝑎 = 0 

𝑏 = 5 

 𝐺 = (28948022309329048855892746252171976963363056481941560715954676764349967630336, 

28948022309329048855892746252171976963363056481941647379679742748393362948097) 

vii. In the shielded payment scheme, zero-knowledge proofs are used for all three payment 

schemes, i.e., Sprout, Sapling, and Orchard. For each payment scheme, Zcash uses a 

specific proving system; therefore, there are a total of three proving systems in Zcash. 

 In the Sprout shielded payment scheme, zk-SNARKs are generated by a fork of 

libsnark using the BCTV14 proving system and BN-254 pairing to prove and 

verify Sprout JoinSplit statements. 

 For Sapling, the Groth16 proving system is used with BLS12-381 pairing to prove 

and verify Sapling spend and output statements. 

 For Orchard, the Halo 2 proving system is used with the Vesta curve to prove and 

verify Orchard action statements. 


